ارزیابی تنوع‌پذیری و شناسایی صفات مؤثر بر عملکرد لاین‌های امیدبخش نخود تحت شرایط تنش خشکی

نوع مقاله : مقالات پژوهشی

نویسندگان

1 استادیار گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه بوعلی‎سینا، همدان، ایران

2 دانشیارگروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه بوعلی‌سینا، همدان، ایران

3 دانشجوی دکترای اصلاح نباتات، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

4 دانشیار بخش تحقیقات زراعی باغی مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کردستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، سنندج، ایران

چکیده

اولین گام جهت موفقیت در هر برنامه به نژادی، ارزیابی تنوع ژرم‌پلاسم و برآورد پارامترهای ژنتیکی مرتبط با تنوع در صفات مختلف می­باشد. اهداف اصلی این تحقیق، ارزیابی 20 ژنوتیپ نخود با استفاده از روش­های مختلف آماری، برآورد برخی از پارامترهای ژنتیکی صفات مهم اگرومورفولوژیکی و شناسایی مهم­ترین صفات مؤثر بر افزایش عملکرد دانه آن‌ها بود. جهت رسیدن به این اهداف، آزمایشی در قالب طرح بلوک­های کامل تصادفی با سه تکرار تحت شرایط دیم در مزرعه پژوهشی مرکز تحقیقات کشاورزی و منابع طبیعی استان کردستان- ایستگاه سنندج در سال زراعی 1392-1391 انجام شد. هرچند که مقدار زیاد مؤلفه اول و عامل اول، به­عنوان «مؤلفه یا عامل عملکرد و اجزای عملکرد»، مورد نظر بود، ولی مقدار بینابین مؤلفه دوم و عامل دوم، به­عنوان «مؤلفه یا عامل رشد رویشی» پیشنهاد شد. بیشترین هم­راستایی مثبت صفات با مؤلفه و عامل اول، به­ترتیب مربوط به زیست­توده، عملکرد دانه در بوته، تعداد غلاف در بوته و تعداد دانه در بوته بود که بر این اساس، صفات زیست­توده، تعداد غلاف در بوته و تعداد دانه در بوته، به­عنوان مهم­ترین صفات مؤثر بر افزایش عملکرد دانه تحت شرایط دیم شناخته شدند. به­طور معکوس، افزایش بی‌رویه صفت تعداد شاخه­ اصلی در بوته، بیشترین ارتباط منفی را با مؤلفه و عامل اول، یعنی با عملکرد دانه، نشان داد و به­عنوان نامطلوب­ترین صفت با تأثیر منفی بر عملکرد دانه در شرایط این آزمایش شناسایی شد. پراکنش مطلوب ژنوتیپ­ها در هر چهار ناحیه بای‌پلات­ها بیانگر وجود تنوع ژنتیکی بالا در بین آن‌ها بود. از بین صفات مورد نظر، صفات وزن100دانه، زیست­توده و عملکرد دانه بیشترین تنوع ژنتیکی را نشان دادند. نتایج تجزیه خوشه­ای بیانگر این بود که خوشه دوم، به­عنوان «خوشه عملکرد دانه»، دارای بیشترین فاصله ژنتیکی با اعضای خوشه سوم بود که انجام تلاقی بین ژنوتیپ­های این دو خوشه، منجر به بروز تنوع چشمگیری در اولین نسل تفرق خواهد شد. نتایج تجزیه تابع تشخیص، صحت گروه­بندی تجزیه خوشه­ای را به طور صددرصد تأیید نمود. طبق نتایج این آزمایش، انتخاب برای مقدار بیشتر صفات زیست­توده، تعداد غلاف در بوته، تعداد دانه در بوته و مقدار کمتر تعداد شاخه­ اصلی در بوته، منجر به بهبود عملکرد دانه تحت شرایط دیم خواهد شد. از بین صفات، وزن100دانه و زیست‌توده دارای بیشترین تنوع ژنتیکی بودند که از این تنوع موجود می­توان در راستای انتخاب غیرمستقیم جهت بهبود عملکرد دانه در این ژرم‌پلاسم و تحت شرایط دیم استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Assessing variability and detecting the effective traits on yield of chickpea (Cicer arietinum L.) promising lines under drought stress condition

نویسندگان [English]

  • Sayyed Saeed Moosavi 1
  • Mohammad Reza Abdollahi 2
  • Fatemeh Abdi 3
  • Homayoun Kanouni 4
1 Assistant Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
2 Associate Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
3 PhD. Student, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
4 Associate Professor, Kordestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sanandaj, Iran
چکیده [English]

Introduction
Chickpea is one of the most important pulses in the world and it plays a key role in feeding of people in Iran. Iran is one of the original centers of chickpea. This plant has a significant genetic diversity and has favorable conditions for breeding and introducing new cultivars in Iran. According to FAO reports (2014), the average grain yield of chickpea in Iran with a cultivated area of 565 thousand hectares and an average yield of 557 kg per hectare is very low compared to the average of the major countries producing chickpeas. In order to solve this problem, identification of the initial variety of lines and cultivars to start the program is of particular importance. In fact, three factors of heredity, high diversity and severity of selection are effective factors in increasing the response to selection. In this regard, there are various methods for estimating genetic variation in plant species, one of the most important of these methods is multivariate analysis. It is necessary to use these methods for the classification of germplasm and the analysis of the genetic relationships existing between the modifying materials. Among the various methods of multivariate analysis, the principal component analysis, factor analysis, cluster analysis and decomposition function analysis are among the most important of these methods. In fact, one of the important goals of an outbreak is to select the best genotypes. In order to achieve this goal, the studied population should have a significant variation in terms of the characteristics studied, which knowledge of this diversity requires evaluation of the germplasm.
 
Materials and Methods
This study included 20 chickpea (Cicer arietinum L.) promising lines were planted in a randomized complete block design with three replications in 2013 growing season. To evaluate the diversity of lines based on important agro-morphological traits and to achieve the desired goals, various statistical methods including principal component analysis, factor analysis, cluster analysis and decomposition function analysis were used. Genotypic coefficient of variance (GCV) and phenotype coefficient of variance (PCV) using genotype variance and phenotype variance, respectively, were calculated. All calculations and statistical analyzes such as component analysis, cluster analysis, and decomposition function analysis were performed using SPSS and Minitab software.
 
Results and Discussion
The lowest and the highest coefficient of genotypic changes were related to day physiology (2.66%) and 100-seed weight (49.76%). The results showed that the three main first components explained 76% of the total variance of the traits totally. The first and second components were named as "component of grain yield increase" and "vegetative growth component". The results of factor analysis were consistent with the results of the principal component analysis. In order to cluster the studied lines and for their grouping based on the studied traits, Ward method and Pearson’s square distance matrix were used. According to the cluster analysis, the genotypes were located in three distinct groups, so that the second and third clusters had the highest genetic distance and they were recognized as “yield clusters" and "vegetative growth cluster", respectively. Therefore, crossing between the two above mentioned-groups, will result to high artificial diversity in the future generations. According to the cluster analysis, the lines were divided into three separate clusters. Discriminant function analysis confirmed the cluster grouping completely. In a study, nineteen chickpea lines and five genotypes of wild chickpea (Cicer veticulatum) were classified into three distinct groups using cluster analysis, so that wild-type genotypes in one group and two lines of cropping lines were grouped separately from other lines. Ganjali et al, (2009), applied the multivariate bi-plot analysis to evaluate the variation in chickpea germplasm for drought resistance.
 
Conclusion
There was a remarkable genetic diversity for the current germplasm, therefore existence a high level of genetic diversity and a remarkable GVC for the trait of 100-seed weight indicating that this trait can be used as a suitable character for yield improvement in the germplasm and under this experiment conditions. Finally, selection for high levels of biomass, pod number per plant and seed number per plant, and a low amount of main branches number, will increase the grain yield in the future breeding program.

کلیدواژه‌ها [English]

  • Cluster analysis؛ Discriminant function
  • Drought stress؛ Factor analysis؛ Principal component analysis
  1. Abhari, A., Azizi, E., and Hares Abadi, B. 2017. Effect of superabsorbent on yield and yield components of chickpea in drought stress conditions of the end of the season. Iranian Journal of Crop Production 3: 21-32. (In Persian).
  2. Aghaei, M., Kohpaiegani, A., Vaezi, Sh., and Jahangiri, A. 2005. Potential of genetic diversity in Iranian Chickpea Collection. Articles of the First National Congress Pulses, Institute for Plant Sciences, Ferdowsi University of Mashhad. (In Persian).
  3. Akbari, L., Khodambashi-Emami, M., and Hoshmand, S. 2014. Genetic parameters of seed yield, yield components and plant height in lentil. Iranian Journal of Seed and Plant Improvement 3: 10-30. (In Persian).
  4. Anonymous. 2009. Ministry of Jahad Agriculture. Agriculture Statistical Yearbook of Iran. Volume 1. (In Persian).
  5. Ashraf, M., and Hariss, P.J.C. 2013. Photosynthesis under stressful environments: An overview. Journal of Photosynthetica 51(2): 163-190.
  6. Broughton, W.J.G., Hernández, M, Blair, S., Beebe, P.G., and Vanderleyden J. 2003. Beans model food legume. Plant Soil 252: 55-128.
  7. Chegamirza, Sh., Chegamirza, K., and Mohammadi, R. 2012. Study of genetic variation in cultivars and landraces of chickpea based on agronomic traits in dry land conditions. Iranian Journal of Agriculture Science 1(1): 108-119. (In Persian).
  8. Dwevdi, K.K., and Gaibriyal, M. 2009. Assessment of genetic diversity of cultivated chickpea (Cicer arietinum L.). Asian Journal of Agriculture Science 1(1): 7-18.
  9. Falconer, D.S., and Mackay, F.C. 1996. Introduction to Quantitative Genetics. Publisher, Longman New York, Fourth edition. 464 pp.
  10. FAO. 2010. FAOSTAT. Available in http/faostat.fao.org/ (28 May 2010).
  11. FAO. 2017. Statistical Database. Food and Agriculture Organization of the United Nations, Rome, Italy (htpp/www.apps.fao.org).
  12. Ganjali A., Bagheri, A., and Porsa, H. 2009. Evaluation of chickpea (Cicer arietinum L.) germplasm for drought resistance. Iran Agronomic Researches Journal 7(1): 183-194.
  13. Ghafoor, A., Gulbaaz, F.N., Afzal, M., Ashraf M., and Arshad, M. 2003. Inter-relationship between SDS-PAGE markers and agronomic traits in chickpea (Cicer arietinum L.). Pakistan Journal of Botany 35: 613-624.
  14. Ghorbani, H., Samizadeh Lahiji, H.A., Rabiei, B., and Allahgholipour, M. 2009. Grouping different rice genotypes using factor and cluster analyses.Sustain Agriculture 21(3):89-105.
  15. Hallauer, A.R., and Miranda, J.B. 1998. Quantitative Genetics in Maize Breeding. Iowa State University Press, Ames Iowa.
  16. Hamayoon, R., Khan, H., Shah, S., Naz, L., Munir, I., Arif, M., Khalil I.A., and Khan, A.Z. 2011. Performance of chickpea genotypes under two different environmental conditions. African Journal of Biotechnology 10: 1534-1544.
  17. Hassan, A.S., Okuofu, C.A., and Balogun, J.K. 2008. The use of biological index of pollution (BIP) in assessing quality of rural water sources in Zaria, Nigeria. Science World Journal 3(2): 101-105.
  18. Imtiaz, M. 2010. A quantitative genetic approach to drought tolerance in chickpea. ASA, CAAS. And SSSA International Annual Meetings Long Beach, California, 31 Oct.-4 Nov.
  19. Jackson, J.E. 1991. A user’ s Guide to Principle Components. Wiley Inter-Science. New York, U.S.A. 569 pp
  20. Jahansouz, M., Naghavi, M., and Dolati, M. 2005. A study of relationships between different traits in white and black chickpea. Iranian Journal of Agriculture Science 35(3): 573-579. (In Persian).
  21. Kamel, M., and Moradi, P. 2008. Determination of traits effective on seed yield of 36 lines of chickpea (Cicerarietinum L.) in northwest provinces of Iran in dry land conditions. Seed and Plant Journal 24(2): 347-257.
  22. Kanouni, H. 2001. The yielding ability and adaptability of chickpea cultivars under rain-fed conditions of Kurdistan. Seed and Plant Journal 17(1): 1-11.
  23. Mahmoodi, F., and Keshavarz, K. 2010. A new chickpea cultivar for dryland moderate and semi warm climate of Iran. Seed and Plant Improvement 26(2): 293-296. (In Persian with English Summary).
  24. Majnoon-Hosieni, N. 1993. Legumes in Iran. Tehran University Publisher. P 240. (In Persian).
  25. Malik, S.R., Shabbir, G., Zubir , M., Iqbal, S.M., and Ali, A. 201 4. Genetic diversity analysis of morphogenetic traits in Desi chickpea (Cicer arietinum L.). International Journal of Agriculture and Biology 16: 956-960.
  26. Mardi, M., Taleei, A., and Omidi, M. 2003. A study of genetic diversity and identification of yield components in Desi chickpea. Iranian Journal of Agricultural Science 34(2): 345-351. (In Persian).
  27. Mohammadali-Pouryamchi, H., Bihamta, M.R., Peighambari, S.A., and Naghavi., M.R .2012. Effect of terminal drought stress on grain yield and yield components in Kabuli chickpea genotypes. Iranian Journal of Crop Sciences 14(3): 202-217. (In Persian).
  28. Mohammadi, S.A., and Prasanna, B.M. 2003. Analysis of genetic diversity in crop plant-salient statistical tools and consideration. Crop Science 43: 1235-1248.
  29. Moosavi, S.S., Abdollahi, M.R., Kian-Ersi, F., and Ahmadi Dehrashid, D. 2017. Assessing genetic diversity and heritability of effective traits on the yield of chickpea (Cicer arietinum L.) under rain-fed condition. Iranian Journal of Pulses Research 8(1): 192-208. (In Persian with English Summary).
  30. Moosavi, S.S., Kian- Ersi, F., Afuni, D., and Abdollahi, M.R. 2016. Assessing grain yield of bread wheat promising lines and identifying agro-morphological traits related to yield under terminal moisture stress. Journal of Crop Productin and Processing Winter 5(18): 91-104. (In Persian).
  31. Moucheshi, A., Heidari, B., and Dadkhodaie, A. 2010. Genetic variation and agronomic evaluation of chickpea cultivars for grain yield and its components under irrigated and rain fed growing conditions. Iran Agricultural Research 29: 10-21. (In Persian).
  32. Nabovati, S., AghaeiSarbarze, M., Chokan, R., Ghanavati, F., and Najafian, Gh. 2010. Genetic variation in agronomic characteristics and grain quality traits of durum wheat genotypes. Seed and Plant Journal 26(3): 205-218.
  33. Naderi, H., Shokrpour, M., Asghari, A., Kanouni, H., and Esfandiari, E. 2013. Evaluation of cold tolerance in winter sowing of chickpea (Cicerarietinum L.) using morphological and phenological traits in Kurdistan region. Iranian Journal of Pulses Research 4(1): 69-80. (In Persian).
  34. Naghavi, M.R., and Jahansouz, M.R. 2005. Variation in the agronomic and morphological traits of Iranian chickpea accessions. Journal of Integrative Plant Biology 47(3): 375-379.
  35. Najibnia, S., Nezami, A., Bagheri, A., and Porsa, H. 2008. Study of phenological and morphological characteristics of chickpea (Cicer arietinum L.) cold tolerant genotypes in fall planting. Iran Agronomic Researchs Journal 6(1): 183-192.
  36. Naz, N,. Hamed, M., Ashraf, M., Arshad, M., and Sajid Aqeel Ahmad, M. 2010. Impact of salinity on species association and phytosociology of halophytic plant community in the cholistan desert. Pakistan Journal of Botany 42(4): 2359-2367.
  37. Ozveren Yucel, D., Anlarsal, A.E., and Yücel, C. 2006. Genetic variability, correlation and path analysis of yield and yield components in chickpea (Cicer arietinum L.). Turkish Journal of Agricultural and Forestry 30: 183-188.
  38. Pezeshkpour, P., and Afkar, S. 2018. The study of genetic diversity, heritability and genetic advance of morphological traits, yield and yield components in different chickpea (Cicer arietinum) genotypes. Journal of Crop Breeding 9(24): 61-68.
  39. Ramirez-Vallejo, P., and Kelly, J.D. 1998. Traits related to drought resistance in common bean. Euphytica 99: 127-136.
  40. Rao, L.S., Ran, U.P., Deshmukh, P.S., Kumar, P.A., and Panguluri, S.K. 2007. RAPD and ISSR fingerprinting in cultivated chickpea (Cicer arietinum L.) and its wild progenitor Cicerreticulatum. Genetic Resource Crop Evolution 54: 1235-1244.
  41. Renganayaki, K., Read, J.C., and Fritz, A.K. 2001. Genetic diversity among tegxas bluegrass (PoaarachniferaTorr.) revealed by AFLP and RAPD markers. Theoretical and Applied Genetics 2: 1037-1045.
  42. Salimi, S., Lahiji, H.S., Abadi, G.M., Salimi, S., and Moradi, S. 2012. Genetic diversity in soybean genotypes under drought stress condition using factor analysis and cluster analysis. World Applied Science Journal 16: 474-478.
  43. Shafiee Khorshidi, M., Bihamta, M.R., Khialparast, F., and Naghavi, M.R. 2012. Assessment of genetic variation in common bean (Phaseolus vulgaris L.) genotypes under drought condition using cluster and canonical discriminant analysis (CDA). Journal of Crop Breeding 4: 1-17. (In Persian).
  44. Shiv, S., Iquebal, M.A., Singh, N.P., Solanki, R., and Sarika, K. 2012. Genetic diversity studies in chickpea (Cicer arietinum L.) germplasm. Journal of Food Legumes 25: 31-36.
  45. Siddique, M.R.B., Hamid, A., and Islam, M.S. 1999. Drought stress effects on photosynthetic rate and leaf gas exchange of wheat. Botanical Bulletin of Academia Science 40: 141-145.
  46. Singh, R.K., and Chaudhary, B.D. 1979. Biometrical Methods in Quantitative Genetic Analysis. p: 303. Kelyani Publisher, New Delhi, India.
  47. Singh, T.P., Raiger, H.L., Kumari, J., Singh, K., and Deshmukh, P.S. 2014. Evaluation of Chickpea genotypes for variability in seed protein content and yield components under restricted soil moisture condition. Indian Journal of Plant Physiology 19: 273-280.
  48. Tahir, N.A.R., and Karim, H.F.H. 2011. Determination of genetic relationship among some varieties of chickpea (Cicer arietinum L.) in Sulaimani by RAPD and ISSR markers. Jordan Journal of Biological Sciences 4: 77-86.
  49. Toker, C., and Cagirgan, M.I. 2004. The use of phenotypic correlations and factor analysis in determining characters for grain yield selection in chickpea (Cicer arietinum L.). Journal of Hereditas 140: 226-228.
  50. Zheleva, D., Todorovska, E., Chirstov, N., Ivanov, P., Ivanov, I., and Todorov, I. 2007. Assessing the genetic variation in Bulgarian bred wheat varieties by biochemical and molecular methods. Biotechnology and Biotechnology Equipment 12: 311-321.