Abdelkader, A. A., Khalil, M. S., & Mohamed, M. S. (2022). Simultaneous biodegradation of λ-cyhalothrin pesticide and
Vicia faba growth promotion under greenhouse conditions.
AMB Express,
12(1), 44.
https://doi.org/10.1186/s13568-022-01383-0
Afzal, M., Alghamdi, S. S., Migdadi, H. H., El-Harty, E., & Al-Faifi, S. A. (2022). Agronomical and physiological responses of faba bean genotypes to salt stress.
Agriculture,
12(2), 235.
https://doi.org/10.3390/agriculture12020235
Ahmed, E. Z., & Sattar, A. M. A. E. (2024). Improvement of
Vicia faba plant tolerance under salinity stress by the application of thiamine and pyridoxine vitamins.
Scientific Reports,
14(1), 22367.
https://doi.org/10.1038/s41598-024-72511-y
Anaya, F., Fghire, R., Wahbi, S., & Loutfi, K. (2018). Influence of salicylic acid on seed germination of
Vicia faba L. under salt stress.
Journal of the Saudi Society of Agricultural Sciences,
17(1), 1-8.
https://doi.org/10.1016/j.jssas.2015.10.002
Anderson, D. R., & Burnham, K. P. (2002). Avoiding pitfalls when using information-theoretic methods.
The Journal of Wildlife Management,
66(3), 912-918.
https://doi.org/10.2307/3803155
Banakar, M. H., Ranjbar, G. H., & Sarafraz Ardakani, M. R. (2021). Determination of salt tolerance threshold of different fenugreek (
Trigonella Foenum-graecum L.) ecotypes at germination stage using experimental models.
Journal of Plant Research (Iranian Journal of Biology),
34(4), 861-882. (In Persian with English Abstract).
https://dor.isc.ac/dor/20.1001.1.23832592.1400.34.4.10.3
Basra, S. M. A., Farooq, M., Tabassam, R., & Ahmad, N. (2005). Physiological and biochemical aspects of pre-sowing seed treatments in fine rice (
Oryza sativa L.).
Seed Science and Technology,
33(3), 623-628.
https://doi.org/10.15258/sst.2005.33.3.09
Bavarsadi, M., Modhej, A., & Majdam, M. (2017). Investigation the effect of salinity tension on germination, seedling growth and ionic content of alfalfa genotypes (Medicago sativa L.). Crop Physiology Journal, 9(35), 121-136.
Bekhiet, A. M., Helmy, A. M., Fouda, S. E., & Azzam, C. R. (2022). Evaluation of salinity tolerance of some Egyptian Faba bean varieties during the germination stage. Current Investigations in Agriculture and Current Research, 10, 1316-1328.
Cafaro, V., Alexopoulou, E., Cosentino, S. L., & Patane, C. (2023). Germination response of different castor bean genotypes to temperature for early and late sowing adaptation in the mediterranean regions.
Agriculture,
13(8), 1569.
https://doi.org/10.3390/agriculture13081569
Chauhan, B. S. & Johnson, D. E. (2008). Germination ecology of Chinese sprangletop (
Leptochloa chinensis) in the Philippines.
Weed Science, 56(6), 820-825.
https://doi.org/10.1614/WS-08-070.1
Dagar, J. C., Yadav, R. K., & Sharma, P. C. (Eds.). (2019). Research Developments in Saline Agriculture. p. 926. Singapore: Springer.
De la Reguera, E., Veatch, J., Gedan, K., & Tully, K. L. (2020). The effects of saltwater intrusion on germination success of standard and alternative crops.
Environmental and Experimental Botany,
180, 104254.
https://doi.org/10.1016/j.envexpbot.2020.104254
Dhiman, P., Rajora, N., Bhardwaj, S., Sudhakaran, S. S., Kumar, A., Raturi, G., Chakraborty, K., Gupta, O., Devanna, B. N., Tripathi, D. K., & Deshmukh, R. (2021). Fascinating role of silicon to combat salinity stress in plants: An updated overview.
Plant Physiology and Biochemistry,
162, 110-123.
https://doi.org/10.1016/j.plaphy.2021.02.023
El Boukhari, M. E. M., Barakate, M., Choumani, N., Bouhia, Y., & Lyamlouli, K. (2021). Ulva lactuca extract and fractions as seed priming agents mitigate salinity stress in tomato seedlings.
Plants,
10(6), 1104.
https://doi.org/10.3390/plants10061104
El-Badri, A. M., Batool, M., Mohamed, I. A., Khatab, A., Sherif, A., Wang, Z., Salah, A., Nishawy, E., Ayaad, M., Kuai, J., Wang, B., & Zhou, G. (2021). Modulation of salinity impact on early seedling stage via nano-priming application of zinc oxide on rapeseed (
Brassica napus L.).
Plant Physiology and Biochemistry,
166, 376-392.
https://doi.org/10.1016/j.plaphy.2021.05.040
Ellis, R. H., & Roberts, E. H. (1981). The quantification of ageing and survival in orthodox seeds. Seed Science and Technology (Netherlands), 9(2), 373-409.
El-Mogy, M. M., Garchery, C., & Stevens, R. (2018). Irrigation with salt water affects growth, yield, fruit quality, storability and marker-gene expression in cherry tomato.
Acta Agriculturae Scandinavica, Section B—Soil & Plant Science,
68(8), 727-737.
https://doi.org/10.1080/09064710.2018.1473482
Etesami, H., & Adl, S. M. (2020). Can interaction between silicon and non–rhizobial bacteria help in improving nodulation and nitrogen fixation in salinity–stressed legumes? A review.
Rhizosphere,
15, 100229.
https://doi.org/10.1016/j.rhisph.2020.100229
Farooq, M., Hussain, M., Nawaz, A., Lee, D. J., Alghamdi, S. S., & Siddique, K. H. (2017a). Seed priming improves chilling tolerance in chickpea by modulating germination metabolism, trehalose accumulation and carbon assimilation.
Plant Physiology and Biochemistry,
111, 274-283.
https://doi.org/10.1016/j.plaphy.2016.12.012
Farooq, M., Gogoi, N., Hussain, M., Barthakur, S., Paul, S., Bharadwaj, N., Migdadi, H. M., Alghamdi, S. S., & Siddique, K. H. (2017b). Effects, tolerance mechanisms and management of salt stress in grain legumes.
Plant Physiology and Biochemistry,
118, 199-217.
https://doi.org/10.1016/j.plaphy.2017.06.020
Gao, H. J., Yang, H. Y., Bai, J. P., Liang, X. Y., Lou, Y., Zhang, J. L., Wang, D., Zhang, J. L., Niu, S. Q., & Chen, Y. L. (2015). Ultrastructural and physiological responses of potato (
Solanum tuberosum L.) plantlets to gradient saline stress.
Frontiers in Plant Science,
5, 787.
https://doi.org/10.3389/fpls.2014.00787
Gong, D., Zhang, X., Yao, J., Dai, G., Yu, G., Zhu, Q., Guo, Q., & Zheng, W. (2021). Synergistic effects of bast fiber seedling film and nano-silicon fertilizer to increase the lodging resistance and yield of rice.
Scientific Reports,
11(1), 12788.
https://doi.org/10.1038/s41598-021-92342-5
Hafez, E. M., Osman, H. S., El-Razek, U. A. A., Elbagory, M., Omara, A. E. D., Eid, M. A., & Gowayed, S. M. (2021). Foliar-applied potassium silicate coupled with plant growth-promoting rhizobacteria improves growth, physiology, nutrient uptake and productivity of faba bean (
Vicia faba L.) irrigated with saline water in salt-affected soil.
Plants,
10(5), 894.
https://doi.org/10.3390/plants10050894
ISTA. (2010). International Rules for Seed Testing, Rules, 2010. International Seed Testing Association (ISTA) Seed Science and Technology. Zurich. Switzerland.
Johnston, C., Leong, S. Y., Teape, C., Liesaputra, V., & Oey, I. (2024). Low-intensity pulsed electric field processing prior to germination improves
in vitro digestibility of faba bean (
Vicia faba L.) flour and its derived products: A case study on legume-enriched wheat bread.
Food Chemistry,
449, 139321.
https://doi.org/10.1016/j.foodchem.2024.139321
Karunakaran, G., Suriyaprabha, R., Manivasakan, P., Yuvakkumar, R., Rajendran, V., Prabu, P., & Kannan, N. (2013). Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination.
IET Nanobiotechnology,
7(3), 70-77.
https://doi.org/10.1049/iet-nbt.2012.0048
Kaur, S., Suhalia, A., Sarlach, R. S., Shamshad, M., Singh, P., Grover, G., Brar, A., & Sharma, A. (2022). Uncovering the Iranian wheat landraces for salinity stress tolerance at early stages of plant growth.
Cereal Research Communications,
50(4), 895-904.
https://doi.org/10.1007/s42976-022-00245-6
Keshtiban, R. K., Carvani, V., & Imandar, M. (2014). Effects of salinity stress and drought due to different concentrations of sodium chloride and polyethylene glycol 6000 on germination and seedling growth characteristics of chickpea (Cicer arietinum L.). Advances in Environmental Biology, 8(24), 413-420.
Kuai, J., Sun, Y., Guo, C., Zhao, L., Zuo, Q., Wu, J., & Zhou, G. (2017). Root-applied silicon in the early bud stage increases the rapeseed yield and optimizes the mechanical harvesting characteristics.
Field Crops Research,
200, 88-97.
https://doi.org/10.1016/j.fcr.2016.10.007
Kukric, T. N., Marjanovic, J. A. M., Nikolic, Z. T., & Jovicic, D. D. (2023). A comparative study on salt stress response of
Camelina sativa and
Carthamus tinctorius during germination.
Journal of Agricultural Sciences (Belgrade),
68(2), 141-154.
https://doi.org/10.2298/jas2302141k
Latef, A. A. A., Hasanuzzaman, M., & Tahjib-Ul-Arif, M. (2021). Mitigation of salinity stress by exogenous application of cytokinin in faba bean (
Vicia faba L.).
Notulae Botanicae Horti Agrobotanici Cluj-Napoca,
49(1), 12192-12192.
https://doi.org/10.15835/nbha49112192
Lotfi, R., & Ghassemi-Golezani, K. (2015). Influence of salicylic acid and silicon on seed development and quality of mung bean under salt stress.
Seed Science and Technology,
43(1), 52-61.
https://doi.org/10.15258/sst.2015.43.1.06
Luyckx, M., Hausman, J. F., Lutts, S., & Guerriero, G. (2017). Silicon and plants: Current knowledge and technological perspectives.
Frontiers in Plant Science,
8, 411.
https://doi.org/10.3389/fpls.2017.00411
Maalouf, F., Ahmed, S., & Bishaw, Z. (2021). Faba bean. In The Beans and the Peas. pp. 105-131. Woodhead Publishing.
Meot-Duros, L., & Magne, C. (2008). Effect of salinity and chemical factors on seed germination in the halophyte
Crithmum maritimum L.
Plant and Soil,
313, 83-87.
https://doi.org/10.1007/s11104-008-9681-6
Mustafa, G., Akhtar, M. S., & Abdullah, R. (2019). Global concern for salinity on various agro-ecosystems.
Salt Stress, Microbes, and Plant Interactions: Causes and Solution, 1, 1-19.
https://doi.org/10.1007/978-981-13-8801-9_1
Naseer, M. N., Rahman, F. U., Hussain, Z., Khan, I. A., Aslam, M. M., Aslam, A., Waheed, H., Khan, A. U., & Iqbal, S. (2022). Effect of salinity stress on germination, seedling growth, mineral uptake and chlorophyll contents of three Cucurbitaceae species.
Brazilian Archives of Biology and Technology,
65, e22210213.
https://doi.org/10.1590/1678-4324-2022210213
Netondo, G. W., Onyango, J. C., & Beck, E. (2004). Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress.
Crop Science,
44(3), 806-811.
https://doi.org/10.2135/cropsci2004.8060
Nirmala, S., Mukesh, Y., Venkataraman, B. K., Kumar, S. R., & Kumar, J. P. (2016). Hybridization between salt resistant and salt susceptible genotypes of mungbean (
Vigna radiata L. Wilczek) and purity testing of the hybrids using SSRs markers.
Journal of Integrative Agriculture,
15(3), 521-527.
https://doi.org/10.1016/S2095-3119%2815%2961161-3
Omar, S. A., Feng, Y., Yu, M., Eldin, S. A. G., Eldenary, M. E., Shabala, S., Allakhverdiev, S., & Abdelfattah, M. H. (2024). Exogenous application of 5-azacitidin, royal jelly and folic acid regulate plant redox state, expression level of DNA methyltransferases and alleviate adverse effects of salinity stress on
Vicia faba L. plants.
Heliyon,
10(10).
https://doi.org/10.1016/j.heliyon.2024.e30934
Rawat, J., Sanwal, P., & Saxena, J. (2016). Potassium and its role in sustainable agriculture. In Potassium Solubilizing Microorganisms for Sustainable Agriculture. pp. 235-253. New Delhi: Springer India.
Saadat, H., Sedghi, M., Seyed Sharifi, R., & Farzaneh, S. (2023). The effect of priming with different levels of chitosan on physiological and biochemical traits in french bean (
Phaseolus vulgaris L.) under salinity stress.
Plant Production Technology, 14(2), 75-89. (In Persian).
https://doi.org/10.22084/ppt.2023.26100.2075
Sabaghnia, N., & Janmohammadi, M. (2014). Graphic analysis of nano-silicon by salinity stress interaction on germination properties of lentil using the biplot method. Agriculture & Forestry/Poljoprivreda i Sumarstv, 60(3), 29-40.
Sahab, S., Suhani, I., Srivastava, V., Chauhan, P. S., Singh, R. P., & Prasad, V. (2021). Potential risk assessment of soil salinity to agroecosystem sustainability: Current status and management strategies.
Science of the Total Environment,
764, 144164.
https://doi.org/10.1016/j.scitotenv.2020.144164
Sehrawat, N., Yadav, M., Singh, R., Aggarwal, D., & Devi, A. (2020). Drought and salinity stress as major threat for sustainable Mung bean production: Emerging challenges and future perspectives. Annals of Plant Sciences, 9(6), 3899-3906.
Shahzad, M., Zorb, C., Geilfus, C. M., & Muhling, K. H. (2013). Apoplastic Na
+ in
Vicia faba leaves rises after short‐term salt stress and is remedied by silicon.
Journal of Agronomy and Crop Science,
199(3), 161-170.
https://doi.org/10.1111/jac.12003
Sharma, A. D., Rathore, S. V. S., Srinivasan, K., & Tyagi, R. K. (2014). Comparison of various seed priming methods for seed germination, seedling vigour and fruit yield in okra (
Abelmoschus esculentus L. Moench).
Scientia Horticulturae,
165, 75-81.
https://doi.org/10.1016/j.scienta.2013.10.044
Sharma, A. D., Thakur, M., Rana, M., & Singh, K. (2004). Effect of plant growth hormones and abiotic stresses on germination, growth and phosphatase activities in
Sorghum bicolor (L.) Moench seeds.
African Journal of Biotechnology,
3(6), 308-312.
https://doi.org/10.5897/AJB2004.000-2057
Shen, Q., Fu, L., Su, T., Ye, L., Huang, L., Kuang, L., Wu, L., Wu, D., Chen, Z., Zhang, G., & Zhang, G. (2020). Calmodulin HvCaM1 negatively regulates salt tolerance via modulation of HvHKT1s and HvCAMTA4.
Plant Physiology,
183(4), 1650-1662.
https://doi.org/10.1104/pp.20.00196
Tao, Q., Lv, Y., Mo, Q., Bai, M., Han, Y., & Wang, Y. (2018). Impacts of priming on seed germination and seedling emergence of
Cleistogenes songorica under drought stress.
Seed Science and Technology,
46(2), 239-257.
https://doi.org/10.15258/sst.2018.46.2.06
Tavakkoli, E., Watts-Williams, S. J., Rengasamy, P., & McDonald, G. K. (2024). Eliciting the aboveground physiological regulation that underlies salinity tolerance in faba bean (
Vicia faba L.).
Environmental and Experimental Botany,
226, 105849.
https://doi.org/10.1016/j.envexpbot.2024.105849
Van Genuchten, M. V., & Hoffman, G. J. (1984). Analysis of crop salt tolerance data. p. 285-271, In: I. Shainberg and J. Shalhevet (eds.). Soil Salinity under Irrigation- Process and Management. Springer-Verlag, NewYork, NY.
Wang, X. D., Ou-yang, C., Fan, Z. R., Gao, S., Chen, F., & Tang, L. (2010). Effects of exogenous silicon on seed germination and antioxidant enzyme activities of Momordica charantia under salt stress. Journal of Animal and Plant Sciences, 6(3), 700-708.
Wu, H., Guo, J., Wang, C., Li, K., Zhang, X., Yang, Z., Li, M., & Wang, B. (2019). An effective screening method and a reliable screening trait for salt tolerance of
Brassica napus at the germination stage.
Frontiers in Plant Science,
10, 530.
https://doi.org/10.3389/fpls.2019.00530
Zaid, A., Gul, F., Ahanger, M. A., & Ahmad, P. (2018). Silicon-mediated alleviation of stresses in plants. In Plant Metabolites and Regulation under Environmental Stress. pp. 377-387. Academic Press.
Zaki, F. S., Elsayed, A. E., Ahmed, A. M., & Khalid, K. A. (2024). Salinity stress and different types of nano silicon's effects on lupine morphology and biochemical accumulations.
Biocatalysis and Agricultural Biotechnology,
55, 102997.
http://dx.doi.org/10.1016/j.bcab.2023.102997
Zhou, H., Shi, H., Yang, Y., Feng, X., Chen, X., Xiao, F., Lin, H., & Guo, Y. (2024). Insights into plant salt stress signaling and tolerance.
Journal of Genetics and Genomics,
51(1), 16-34.
https://doi.org/10.1016/j.jgg.2023.08.007
ارسال نظر در مورد این مقاله