تأثیر کلریدکلسیم بر صفات مورفوفیزیولوژیک، بیوشیمیایی و انباشت برخی عناصر در گیاه لوبیاقرمز رقم گلی (Phaseolus vulgaris L.) تحت تنش کلریدسدیم

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد فیزیولوژی گیاهی، دانشکده علوم پایه، دانشگاه فردوسی مشهد

2 دانشیار فیزیولوژی گیاهی، گروه زیست‌شناسی دانشکده علوم پایه و نیز عضو پیوستة گروه پژوهشی بقولات پژوهشکدة علوم گیاهی، دانشگاه فردوسی مشهد

3 دانشجوی دکترای فیزیولوژی گیاهی، دانشکده علوم پایه، دانشگاه فردوسی مشهد

چکیده

 کلریدسدیم به عنوان یک تنش محیطی، نقش مهم و محدودکننده­ای بر فرایندهای رشد و نموی گیاه دارد. این پژوهش به منظور بررسی تأثیر کلسیم (CaCl2) در بهبود آسیب‌های ناشی از یون سدیم در گیاه لوبیاقرمز (Phaseolus vulgaris L. cv. Goli) در آزمایشگاه فیزیولوژی گیاهی دانشکده علوم پایه دانشگاه فردوسی مشهد در سال1391 انجام شد. سطوح مختلف کلریدسدیم (شامل0، 50،100 و150 میلی­مولار NaCl) و کلرید­کلسیم (شامل 15 و 10، 5، 0 میلی­مولار CaCl2) به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار مورد بررسی قرارگرفتند. در طول دوره آزمایش گیاهان در فیتوترون با شدت نور تقریبیµmol.m2.s-1 600 و طول دوره روشنایی و تاریکی به‌ترتیب 16 و 8 ساعت رشد نمودند. تنش شدید کلریدسدیم (150 میلی­مولار)، صفات مورفولوژیکی مهم شامل ارتفاع گیاه (49درصد)، سطح برگ (51 درصد)، وزن خشک ریشه (68 درصد) و بخش­ هوایی (35 درصد) و مجموع طول ریشه­ها (35 درصد) را نسبت به شاهد کاهش داد و صفاتی مانند مقدار سدیم برگ، پرولین و آنزیم پلی­فنول­اکسیداز را به‌ترتیب 3/ 8، 78/0 و 75/1 برابر نسبت به تیمار شاهد افزایش داد. کاربرد یون Ca2+ به‌ویژه در غلظت10میلی­مولار، به مقدار زیادی آسیب­های ناشی از تنش کلریدسدیم را بر صفات مورفولوژیک و فیزیولوژیک گیاه لوبیا کاهش داد. در این ارتباط برخی صفات مانند وزن خشک برگ، ارتفاع گیاه، سطح برگ، شاخص پایداری غشاء، محتوای نسبی آب برگ و میزان کلروفیل کل به‌ترتیب به مقدار 17، 25، 8، 5، 4 و 15 درصد در نتیجه کاربرد یون Ca2+ نسبت به شرایط عدم کاربرد کلسیم افزایش داشتند.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of calcium cholorid on morpho-physiological and biochemical characteristics and some mineral accumulation of Bean (Phaseolus vulgaris L.) under salinity stress

نویسندگان [English]

  • Farinaz Shamsaee 1
  • Ali Ganjeali 2
  • Elham Amjadi 3
1 MSc. of Plant Physiology, Biology Department, Faculty of Sciences, Ferdowsi University of Mashhad
2 Associate Professor of Plant Physiology, Biology Department, Faculty of Sciences & Department of Legumes, Research Center for Plant Sciences, Ferdowsi University of Mashhad
3 PhD. Student of Plant Physiology, Biology Department, Faculty of Sciences, Ferdowsi University of Mashhad
چکیده [English]

Introduction
In saline environments, plant growth and crop production are greatly reduced. Salinity, induces oxidative stress in the plants resulting in the production of reactive oxygen species (ROS), subsequently, cell membranes, proteins and nucleic acids are destroyed by ROS. Calcium plays a key role in processes that preserve the structural and functional integrity of plant cell membranes, stabilizes cell wall structures, regulates ion transport and selectivity, and controls ion-exchange behavior as well as cell wall enzyme activities. High concentration of Ca2+, stimulates its entry to the cell through ion channels. These channels are also permeable to sodium. Studies have shown that increasing Ca2+ concentration, decreases plasma membrane permeability to Na+ and changes the cell wall properties resulting in reduced Na+ transport by passive transport and decreased Na+ accumulation in the cell. The main objective is to identify the interaction effects of Na+/Ca2+ ions on morpho physiological characteristics of Bean plant and investigation the ameliorative effects of Ca2+ on salinity-induced damages.
 
Material and Methods
 In order to evaluate the effects of different concentrations of Na+ (NaCl) including: 0, 50, 100 and 150 mM NaCl and Ca2+ (CaCl2) including: 0, 5, 10 and 15 mM CaCl2 on morph physiological characteristics of Bean an experiment was arranged as a factorial, based on completely random design. The plastic pots containing seeds were transferred to growth chamber with 600 µmol.m2.s-1 light intensity, 16/8h light and dark period, respectively. The pots were irrigated with water (without NaCl) for 14 days until emergence, then different concentrations of Ca2+ and Na+ were applied. In 6th week after sowing, plants were harvested and morphological and physiological characteristics were evaluated. The amount of some elements in roots and leaves were determined. Data were analyzed using MSTAT-C software.
 
Results and Discussion
The interaction of Na+ and Ca2+ on all morphological traits except root dry weight was significant. Toxicity and drought stress are the result of plant exposure to high concentrations of sodium. As water enters the cell, the turgor pressure increases causing the cell walls to extend irreversibly. The rate at which a cell expands is a function of its turgor pressure and cell wall properties. In all salinity levels, the use of 5 and 10 mM Ca2 + significantly increased plant height compared to control. In high salinity levels (100 and 150 mM NaCl), the role of calcium in increasing plant height decreased. In severity stress (150 mM NaCl), application of 10 mM Ca2 +, significantly increased shoot dry weight and leaf area compared to control. Results for root dry weight showed that, with increasing salinity, root dry weight at all levels of Ca2+, decreased. The highest root dry weight and total root length were attributed to the application of 5 mg Ca2 + in saline-free medium. Application of Ca2 + (mainly at 5 and 10 mM) moderated the negative effects of salinity on morphological traits. The elevated Ca2 + in the medium containing Na + ions, inhibits the binding of Na + to cell walls and the plasma membrane probably. In this way electrolyte leakage in the membrane may be reduced. Calcium improves the ability to synthesize and repair of cell walls with a more efficient function by participating in cell wall construction. In low and medium salinity, the use of 10 mM Ca2+ protected cell membranes from adverse effect of Na+, when compared to the control. Supplemental of 5 and 10 mM Ca2+ in all salinity levels, almost improved the leaf relative water content when compared to the control (non-applied Ca2+). Promotion in hydraulic conductivity, more stability and efficient membranes for selective absorption are the other features that were affected by Ca2+ supplemental. In high salinity, the use of 5 mM Ca2+ reduced the negative effects of salinity on total chlorophyll contain when compared to the control. At all salinity levels, application of 5 and 10 mM CaCl2 significantly reduced leaf proline content compared to control. In this regard, the effect of 5 mM Ca2+ was greater than 10 mM Ca2+. Addition of Ca2+ to the medium of plant exposed to salt stress, reduced proline concentration by increasing proline oxidase and following that reduction in glutamyl kinase activity and finally glutamine is used to synthesize more chlorophyll. At all salinity levels, the use of 5 and 10 mM Ca2 + significantly increased the activity of poly phenol oxidase compared to the control. Calcium promoted the synthesis and activity of many enzymes involved in defense mechanism and reduces the rate of proteolytic degradation. In this way Calcium modulates oxidative stress by altering plant metabolism. Results showed that the use of 5 and 10 mM Ca2 + significantly (P≤ 0.05) reduced the amount of Na+ in the plants (leaves + roots) when compared to control. This result for K+ accumulation was adverse. The obtained results go in line with the findings of other scientists. Wu and Wang, 2012 reported, Ca2+ decreased roots Na+ accumulation, increased shoots K+ accumulation, and enhanced the selective absorption and transport capacity for K+ over Na+ in the plant.
 
Conclusion
Salinity stress significantly reduced plant morphological characteristics but other traits such as proline and polyphenol oxidase increased. Membrane stability index, leaf relative water content, total chlorophyll content and leaf and root potassium content were significantly decreased with applying salinity stress. The use of Ca2+ ions, especially 5 and 10 mM, greatly reduced the negative effects of salinity. It seems that the use of calcium application can be considered as a simple and low cost method for reducing the adverse effects of salinity stress.

کلیدواژه‌ها [English]

  • Bean
  • Membrane stability index
  • Root and shoot traits
  • Salinity stress
  1. Acosta-Motosa, J.R., Diaz-Vivancosb, P., Álvareza, S., Fernández-Garcíac, N., Sánchez-Blancoa, M.J., and Hernández, J.A. 2015. NaCl-induced physiological and biochemical adaptative mechanisms in the ornamental Myrtus communis L. plants. Journal of Plant Physiology 183: 41-51.
  2. Al Hassan, M., Morosan, M., Pilar López-Gresa, M., Prohens, J., Vicente, O., and Boscaiu, M. 2016. Salinity-induced variation in biochemical markers provides insight into the mechanisms of salt tolerance in common (Phaseolus vulgaris) and Runner (P. coccineus) beans. International Journal of Molecular Sciences 17: 3-16.
  3. Amira, M.S., and Qados, A. 2011. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). Journal of the Saudi Society of Agricultural Sciences 10: 7-15.
  4. Amirul Alam, M., Juraimi, A.S., Rafii, M.Y., and Abdul Hamid, A. 2015. Effect of salinity on biomass yield and physiological and stem-root anatomical characteristics of Purslane (Portulaca oleracea L.) accessions. Journal of BioMed Resesrch International 1page.
  5. Arnon, D.J. 1956. Chlorophyll absorption spectrum and quantitative determination. Biochimical and Biophysical Acta 20: 449-461.
  6. Bates, L.S., Waldren, R.P., and Tear, I.D. 1973. Rapid determination of free proline for water-stress studies. An International Journal on Plant-Soil Relationships 39: 205-207.
  7. Bian, Sh., and Jiang, Y. 2009. Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery. Journal of Scientia Horticulturae 120: 246-270.
  8. Chapman, H.D., and Pratt, P.F. 1961. Method of Analysis for Soil, Plants and Water. University of California, Division of Agricultural Sciences. Technology & Engineering. 309 pp.
  9. Cramer, G.R., and Jones, R.L. 1996. Osmotic stress and abcisic acid reduce cytosolic calcium activities in root of Arabidopsis thaliana. Journal of Plant Cell Environment 19: 1291-1298.
  10. Dahal, K., Li, X., Tai, H., Creelman, A., and Bizimungu, B. 2019. Improving potato stress tolerance and tuber yield under a climate change; Scenario A Current Overview. Journal of Frontiers in Plant Science 10: 1-16.
  11. Dorri, H.R., 2008. Bean Agronomy. Center of Khomain Bean Research Press.
  12. FAO-AQUASTAT & GEMI .2013-2019. Soil Salinity Mitigation and Adaptation Projects. Applications will be accepted from 16th September to 31st May 2019. Area equipped for irrigation and percentage of cultivated land. Available athttp://www.fao.org/nr/water/aquastat/globalmaps/index.stm. Accessed 16 Sep. 2013.
  13. Farooq, M., and Barsa, S.M.A. 2010. Changes in nutrient homeostasis and reserves metabolism during rice seed priming: Consequences for seedling emergence and growth. Journal of Agricultiral Sciences China 9: 191-198.
  14. Gill, S.S., Anjum, N.A., Gill, R., Yadav, S., Hasanuzzaman, M., and Fujita, M. 2015. Superoxide dismutase-mentor of abiotic stress tolerance in crop plants (Review Article). Journal of Environmental Science and Pollution Research 22: 10375-10394.
  15. Gobinathan, P., Sankar, B., Murali, P.V., and Panneerselvam, R. 2009. Interactive effects of calcium chloride on salinity-induced oxidative stress in Pennisetum typoidies. Journal of Botany Research International 2: 143-148.
  16. Hadi, M.R., and Karimi, N. 2012. The role of calcium in plants salt tolerance. Journal of Plant Nutrition 35: 2037-2054.
  17. Haghighi, M., Afifipour, Z., and Mozafarian, M. 2012. The alleviation effect of silicon on seed germination and seedling growth of tomato under salinity stress. Vegetable Crops Research Bulletin 76: 119-126.
  18. Hasegawa, P.M., Bressan, R.A., Zhu., J.K., and Bohnert, J.H. 2000. Plant cellular and molecular responses to high salinity. Annual review of plant physiology and plant molecular biology 51: 463-499.
  19. Hu, T., Yi, H., Hu, L., and Fu, J. 2013. Stomatal and metabolic limitations to photosynthesis resulting from NaCl stress in perennial Ryegrass genotypes differing in salt tolerance. Journal of the American Society for Horticultural Science 138(5): 350-357.
  20. Javanshah, A., and Aminian Nasab, S. 2016. The Effects of Humic Acid and Calcium on morpho-physiological traits and mineral nutrient uptake of Pistachio seedling under salinity stress. Journal of Nuts 7(2): 125-135.
  21. Koster, P., Wallrad, L., Edel, K.H., Faisal, M., Alatar, A.A., and Kudla, J. 2019. The battle of two ions: Ca2+ signalling against Na+ stress. Journal of Plant Biology 21: 39-48.
  22. Mackinney, G. 1941. Absorption of light by chlorophyll solutions. Journal of Biological Chemistry 140: 315-322.
  23. Ndakidemi, P.A., and Makoi, J.H.J.R. 2009. Effect of NaCl on the productivity of four selected common bean cultivars (Phaseolus vulgaris L.). Journal of Scientific Research and Essay 10: 1066-1072.
  24. Neeta Patil, M. 2012. Adaptations in response to salinity in safflower cv. Bhima. Asian Journal of Crop Science 4: 50-62.
  25. Niamat, B., Naveed, M., Ahmad, Z., Yaseen, M., Ditta, A., Mustafa, A., Rafique, M., Bibi, R., Sun, N., and Xu, M., 2019. Calcium-enriched animal manure alleviates the adverse effects of salt stress on growth, physiology and nutrients homeostasis of Zea mays L. Journal of Plants 8: 1-16.
  26. Pashangeh, Z., and Shamili, M. 2018. Ameliorating negative impacts of salinity on physiological characteristics of guava (Psidium guajava L.) by application of gibberellic acid. Journal of Plant Process and Function 7(23) :85-96.
  27. Rahman, A., Nahar, K., Hasanuzzaman, M., and Fujita, M. 2016. Calcium supplementation improves NaC/KC ratio, Antioxidant defense and Glyoxalase systems in salt-stressed rice seedlings. Journal of Frontiers in Plant Science 7: 1-38.
  28. Raymond, J., Rakariyatham, N., and Azanza. J.L. 1993. Purification and some properties of polyphenoloxidase from sunflower seeds. Journal of Food and Agriculture Organization of the United Nations 34: 927-931.
  29. Sairam, R.K., and Saxena, D.C. 2001. Oxidative stress and Antioxidants in wheat genotypes: possible mechanism of water stress tolerance. Journal of Agronomy and Crop Science 184: 55-61.
  30. Shabala S. 2013. Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Annals of Botany Journal 112: 1209-1221.
  31. Silva Domingues, L., Ribeiro, N.D., Andriolo, J.L., Possobom, M.T.D.F., and Zemolin, A.E.M. 2016. Growth, grain yield and calcium, potassium and magnesium accumulation in common bean plants as related to calcium nutrition. Journal of Acta Scientiarum Agronomy 38: 207-217.
  32. Summart, J., Thanonkeo, P., Panichajakul, S., Prathepha, P., and Mc Manse, M.T. 2010. Effect of salt stress on growth, inorganic ion and proline accumulation in Thai aromatic rice. African Journal of Biotechnology 9: 145- 152.
  33. Taïbi, Kh., Taïbi, F., and Belkhodja, M. 2012. Effect of external calcium supply on the physiological of salt stress seed bean (Phaseolus vulgaris L.). Journal of Genetics and Plant Physiology 2: 177-186.
  34. Thor, K. 2019. Calcium-nutrient and messenger (moni review). Journal of Frontiers in Plant Science 10: 1-7.