گروه‌بندی ژنوتیپ‌های کاندیدای متحمل به خشکی نخود کابلی (Cicer arietinum L.) براساس عملکرد و اجزای عملکرد در تاریخ‌های مختلف کاشت در شرایط کم آبیاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه اگروتکنولوژی دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 پژوهشکده علوم گیاهی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

به‌منظور گروه‌بندی ژنوتیپ‌های کاندیدای متحمل به خشکی نخود (Cicer arietinum L.) در تاریخ‌های مختلف کاشت، آزمایشی به‌صورت کرت‌های خرد شده در قالب طرح بلوک‌های کامل تصادفی، در چهار تکرار در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه فردوسی مشهد در سال زراعی 98- 1397 اجرا شد. تیمار‌های آزمایش شامل تاریخ‌های کاشت (14 اسفند و 24 فروردین) به‌عنوان عامل اصلی و ژنوتیپ‌های نخود (MCC696، MCC552، MCC537، MCC427، MCC352 و MCC80) و دو رقم جم و ثمین به‌عنوان عامل فرعی بودند. نتایج نشان داد که ژنوتیپ‌ها در تاریخ کاشت اول نسبت به تاریخ کاشت دوم در تمامی صفات دارای برتری بودند. بیشترین تعداد روز تا رسیدگی (103 روز) و بالاترین عملکرد دانه (06/1 کیلو‌گرم در مترمربع) در ژنوتیپ 696MCC و همچنین بالاترین ارتفاع بوته(34 سانتی­‌متر) و عملکرد بیولوژیک (64/2 کیلوگرم در مترمربع) در ژنوتیپ 537MCC به‌دست آمد. ژنوتیپ 352MCC دارای بیشترین میزان تعداد غلاف در بوته (34 غلاف) بود. ژنوتیپ‌ها براساس شباهت، در تاریخ کاشت اول به چهار خوشه و در تاریخ کاشت دوم به سه خوشه تقسیم شدند. نتایج تجزیه و تحلیل مؤلفه‌های اصلی (PCA) نشان داد که در تاریخ کاشت اول PC1 و PC2 (1/69 %) و در تاریخ کاشت دوم (3/63 %) کل واریانس داده‌ها را به خود اختصاص دادند. به‌طور کلی، نتایج این آزمایش نشان داد که بهترین تاریخ کاشت برای کشت نخود بهاره در شرایط کم آبیاری مشهد، نیمه اسفندماه و بهترین ژنوتیپ‌ها جهت کشت، 537MCC و 696MCC بودند.

کلیدواژه‌ها


©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

Ahluwalia, O., Singh, P. C., & Bhatia, R. (2021). A review on drought stress in plants: Implications, mitigation and the role of plant growth promoting rhizobacteria. Resources, Environment and Sustainability, 5, 100032. https://doi.org/10.1016/j.resenv.2021.100032
Aliu, S., Kaul, H. P., Rusinovich, I., ShalaMayrhofer, V., Fetahu, S., & Zeka, D. (2016). Genetic diversity for some nutritive traits of chickpea (Cicer arietinum L.) from different regions in Kosova. Turkish Journal of Field, Crops, 21(1), 156161.
Amraei, B. (2022). Effects of planting date and plant density on yield and some physiological characteristics of single cross 550 hybrid maize as a second crop. Caspian Journal of Environmental Sciences20(4), 683-691. http://doi.org/10.22124/cjes.2022.5720
Anbessa, Y., Warkentin, T., Vandenberg, A., & Ball, R. (2006). Inheritance of time to flowering in chickpea in a short-season temperate environment. Journal of Heredity, 97(1), 55-61.
Benali, A., El Haddad, N., Patil, S. B., Goyal, A., Hejjaoui, K., El Baouchi, A., Gaboun, F., Taghouti, M., Ouhssine, M., & Kumar, S. (2023). Impact of terminal heat and combined heat-drought stress on plant growth, yield, grain size, and nutritional quality in chickpea (Cicer arietinum L.). Plants12, 3726. https://doi.org/10.3390/plants12213726
Devasirvatham, V., & Tan, D. K. Y. (2018). Impact of high temperature and drought stresses on chickpea production. Agronomy8, 145. https://doi.org/10.3390/agronomy8080145
Devasirvatham, V., Tan, D. K. Y., Gaur, P. M., & Trethowan, R. M. (2015) Chickpea and temperature stress. In: Legumes under Environmental Stress: Yield, Improvement and Adaptations. John Wiley and Sons, Oxford, pp. 81-90. ISBN 978-1-118-91708-4
Edziri, H., Chehab, H., Aissaoui, F., Boujnah, D., & Mastouri, M. (2021). Photosynthetic, anatomical and biochemical responses of olive tree (Olea europaea) cultivars under water stress. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 155(4), 740-6.
FAOSTAT Rome. [(accessed on 17 December 2021)]. Available online: https://www.fao.org/faostat/es/#data/QCL
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29(1), 185-212. ffhal-00886451f.
Fernández-García, P., López-Bellido, L., Munoz-Romero, V., & López-Bellido, R. J. (2013). Chickpea water use efficiency as affected by tillage in rainfed Mediterranean conditions. Agricultural Water Management, 129, 194-199.
Hajarpoor, A., Meghdadi, N., Soltani, A., & Kamkar, B. (2016). Assessment of the adaptation strategiesin rainfed chickpea in response to future climate change in Zanjan province. Journal of Agroecology8(2), 169-181. https://doi.org/10.22067/jag.v8i2.34886
Hassanfard, A., & Nabati, J. (2023). Selection of cold tolerant chickpea genotypes based on cluster analysis. The First National Chickpea Festival and Conference. Kermanshah, Iran.
Hu, J.Zhao, X.Gu, L.Liu, P.Zhao, B.Zhang, J., & Ren, B. (2023). The effects of high temperature, drought, and their combined stresses on the photosynthesis and senescence of summer maize. Agricultural Water Management, 289, 108525.
Iravani Panah, H., Parsa Motlagh, B., Soleimani, A., & Mazaheri Tirani, M. (2022). Effect of different sowing dates on yield and some physiological traits of three chickpea cultivars (Cicer arietinum L.). Iranian Journal of Field Crop Science53(2), 1-16. https://doi.org/10.22059/ijfcs.2021.321358.654817
Islam, M. R., Sarker, B. C., Alam, M. A., Javed, T., Alam, M. J., Zaman, M. S. U., Azam, M. G., Shabbir, R., Raza, A., & Habib-ur-Rahman, M. (2021). Yield stability and genotype environment interaction of water deficit stress tolerant mung bean (Vigna radiata L. Wilczak) genotypes of Bangladesh. Agronomy11, 2136. https://doi.org/10.3390/agronomy11112136
Jicheng, Y., & López J. M. (2020). Understanding MAPK signaling pathways in apoptosis. International Journal of Molecular Sciences, 21(7), 2346. https://doi.org/10.3390/ijms21072346
Liu, B., Kanazawa, A., Matsumura, H., Takahashi, R., Harad0a, K., & Jun, A. (2008). Genetic redundancy in soybean photo responses associated with duplication of the phytochrome A gene. Genetics, 180, 995–1007. http://doi.org/10.1534/ genetics.108.092742
Malik, S. R., Shabbir, G., Zubir, M., Iqbal, S. M., & Asghar, A. (2014). Genetic diversity analysis of morpho-genetic traits in Desi chickpea (Cicer arietinum). International Journal of Agriculture and Biology, 16, 1560-8530.
Muehlbauer, F. J., & Tulle, A. (1997). Purdue University Cicer arietinum L. NewCrop FactSHEET. Center for New Crops and Plant Products.
Oguz, M. C., Aycan, M., Oguz, E., Poyraz, I., & Yildiz, M. (2022). Drought stress tolerance in plants: Interplay of molecular, biochemical and physiological responses in important development stages. Physiologia2, 180-197. https://doi.org/10.3390/physiologia2040015
Pang, J., Turner, N. C., Khan, T., Du, Y. L., Xiong, J. L., Colmer, T. D., Devilla, R., Stefanova, K., & Siddique, K. H. M. (2017). Response of chickpea (Cicer arietinum L.) to terminal drought: Leaf stomatal conductance, pod abscisic acid concentration, and seed set. Journal of Experimental Botany68(8), 1973–1985. https://doi.org/10.1093/jxb/erw153
Pezeshkpour, P., Minapour, A., & Raeisvand, M. (2021). Seed yield stability of autumn sowing chickpea genotypes using nonparametric methods. Journal of Crop Production, 14(4), 1-20. http://doi.org/10.22069/ejcp.2022.18882.2408
Qulmamatova, D. E. (2023). Chickpea (Cicer arietinum L.) genotypes evaluation for high yield through multivariate analysis. SABRAO Journal of Breeding and Genetics, 55(1), 107-114. http://doi.org/10.54910/sabrao2023.55.1.10
Rozan, P., Kuo, Y. H., & Lambein, F. (2001). Amino acids in seeds and seedlings of the genus Lens. Phytochemistry, 58(2), 281-9. http://doi.org/10.1016/s0031-9422(01)00200-x
Sajid, S. S., & Hu, G. (2022) Optimizing crop planting schedule considering planting window and storage capacity. Frontiers in Plant Science, 13, 762446. http://doi.org/10.3389/fpls.2022.762446
Seyedi, M., Azadbakht, A., Fesahat, A. (2018). Evaluation of growing properties, yield and component yield of three chickpea cultivar in waiting and spring sowing. Journal of Agronomy and Plant Breeding, 14(1), 73-86. (In Persian with English Abstract)
Seyedi, S. M., & Hamzei, J. (2020). Study of the effect of planting dates on the quantitative and qualitative performance of chickpea cultivars under dry conditions. Plant Production Research, 28(4), 65-83. http://doi.org/10.22069/jopp.17459.2608
Sherin, G., Aswathi, K. P. R., & Puthur, J. T. (2022) Photosynthetic functions in plants subjected to stresses are positively influenced by priming. Plant Stress, 4, 100079.
Skendžić, S., Zovko, M., Živković, I. P., Lešić, V., & Lemić, D. (2021). The impact of climate change on agricultural insect pests. Insects, 12(5), 440. http://doi.org/10.3390/insects12050440.
Tiwari, P. N., Tiwari, S., Sapre, S., Babbar, A., Tripathi, N., Tiwari, S., & Tripathi, M. K. (2023). Screening and selection of drought-tolerant high-yielding chickpea genotypes based on physio-biochemical selection indices and yield trials. Life13, 1405. https://doi.org/10.3390/life13061405
Trabelsi, L., Gargouri, K., Hassena, A. B., Mbadra, C., Ghrab, M., Ncube, B., & Gargouri, R. (2019). Impact of drought and salinity on olive water status and physiological performance in an arid climate. Agricultural Water Management213, 749-759.
Yano, T., Aydin, M., & Haraguchi, T. (2007). Impact of climate change on irrigation demand and crop growth in a Mediterranean environment of Turkey. Sensors (Basel), 7, 2297-2315.
Zaferanieh, M., Nezami, A., Parsa, M., Porsa, H., & Bagheri, A. (2009). Evaluation of fall sowing of cold tolerant chickpea (Cicer arietinum L.) germplasms under complementary irrigation in Mashhad condition: 2- Yield and yield components. Iranian Journal of Field Crops Research, 7, 483-492. (In Persian with English Abstract)
Zali, A. G., Ehsanzadeh, P., & Razmjoo, J. (2015). Effects of irrigation regimes on seed yield and yield components of chickpea cultivars at two autumn and spring planting seasons in Lorestan province. Iranian Journal of Field Crop Science46(1), 123-135. https://doi.org/10.22059/ijfcs.2015.54052. (In Persian with English Abstract)
CAPTCHA Image