مدل‌سازی مراحل فنولوژیک و پارامترهای عملکردی گیاه باقلا در شرایط شرق استان گلستان (ارزیابی مدل)

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گنبد کاووس

2 دانشگاه گنبد کاووس

چکیده

در حال حاضر باقلا به‌عنوان یکی از محصولات مهم در منطقه خاورمیانه، افریقا، چین و نقاطی از اروپا و استرالیا در تغذیه انسان و دام مورد توجه قرار دارد. مدل، ابزاری است که ما را در تفسیر و درک دنیایی که در آن زندگی می‌کنیم، یاری می‌کند. پیش‌بینی دقیق فنولوژی گیاهان زراعی از ویژگی‌های ضروری مدل‌های شبیه‌سازی به‌شمار می‌رود. از مدل‌ها می‌توان در بهبود مدیریت تولید گیاهان زراعی برای پیش‌بینی تاریخ‌های احتمالی برداشت یا پیش‌بینی عملکرد نهایی، یا به‌صورت فعال‌تر، برای پیش‌بینی مطمئن زمان وقوع حوادث فنولوژیکی استفاده نمود. مدل استفاده‌شده در این مطالعه، مدل ارائه‌شده توسط سلطانی و همکاران برای نخود بود. برای پارامترهای ورودی مدل، از مقادیر به‌دست‌آمده از آزمایش‌های مزرعه‌ای در دو سال زراعی91-1390 و 92-1391 که در مزرعه تحقیقاتی دانشکده علوم کشاورزی و منابع طبیعی دانشگاه گنبد کاووس در شرایط مطلوب دیم و عاری از آفات، علف‌های هرز و بیماری‌های باقلا اجرا گردیده بود، استفاده شد. 24سناریوی مختلف شامل ترکیبات مختلفی از تراکم و تاریخ کاشت در دو سال زراعی برای مدل تعریف گردید. نتایج نشان داد که مدل قادر است مراحل فنولوژیک گیاه باقلا را به‌جُز روز تا سبزشدن به‌خوبی پیش‌بینی کند. این پیش‌بینی در مراحل منتهی به برداشت باقلا از بالاترین دقت برخوردار بود، به‌نحوی‌که بالاترین ضریب تبیین با مقدار91/0 مربوط به تعداد روز تا برداشت باقلا بود. مطالعه نشان داد که مدل فوق نمی‌تواند به‌خوبی حداکثر سطح برگ، عملکرد، عملکرد بیولوژیک و شاخص برداشت را در شرایط آب و هوایی گنبد و تحت شرایط آزمایش‌های مزرعه‌ای پیش‌بینی نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling of phenological stages and yield parameters of faba bean in the East of Golestan province conditions

نویسندگان [English]

  • ali Rahemi karizki 1
  • Hossein Hosseini 2
1 Gonbad kavous
2 Gonbad Kavous
چکیده [English]

Introduction
Bean is now considered as one of the most important products in the Middle East, Africa, China and parts of Europe and Australia in human and animal nutrition (Turpin et al., 2002). Bean is a suitable herb in rotation with cereals. Because it can break the cycle of many common diseases of grains and reduce the population of nematodes. The model is a tool that helps us interpret and understand the world in which we live (Boote et al., 2003). Precise prediction of the phenology of crops is one of the essential features of simulation models. From models, improved crop production management can be used to predict the probable dates of harvesting or predicting final yields, or more actively, to predict the timing of phenological events. The production and distribution of dry matter in crop simulation models is largely regulated by the timing of development stages. Understanding how the bean's phenological development response to day length and temperature, creates a model for predicting the time of occurrence of different stages of development of this crop. The aim of this study was to obtain a model for predicting phenological stages, maximum leaf area index, economic and biological yield, as well as harvest index of bean plant under Gonbad conditions.
 
Materials & Methods
For the main data, the values obtained from field experiments were carried out at the research farm of the Faculty of Agricultural Sciences and Natural Resources of Gonbad-e-Kavou’s University under favorable rainfed conditions and free of pests, weeds and bean diseases. The experiment was a factorial based on randomized complete block design with four replications in two years. Planting density was at four levels (8, 12, 16 and 20 plants/m2) and sowing date was in three levels (13 November, 1391, 13 December, 1391, 13 December 2012 and 7 December 2011, December 4, 2011 and December 17, 2011). The model used in this study was similar to that of Soltani et al, (1999) for chickpea. Meteorological and climatic data was from 1994 to 2014 of Gonbad. 24 different scenarios including different combinations of density and planting dates were defined for two years in the model. In order to compare simulated data with field experiment data, evaluation indices, explanation factor (R2), root mean square error, normalized root mean square error and line 1: 1 were used. The higher the R2 value from the linear regression of functions and the 1: 1 line closer to one, indicates a high correlation between simulated and observed values and is a sign of a better description of the model in simulating the desired attribute.
 
Results & Discussion
The coefficient of explanation between the predicted values and obtained from field experiments on day to flowering was 0.89. The root mean square error and its normalized value were 2.99 and 1.29 days, respectively. Also, comparison of the number of days to harvest obtained from field experiments with values obtained from the model showed that all of these values are in the range of 15% up and down the 1:1 line. The results showed that the model also well predicted day to pod setting. So that the explanation coefficient, root mean square error and normalized root mean square error, between the data obtained from field experiments and the predicted data of the model were equal to 0.81, 2.99, and 12.0, respectively. Regarding the day to the physiological maturity, the coefficient of explanation, root mean square error and normalized root mean square error were 0.9, 5.84, and 12.0, respectively, which all represent a good prediction of the model. The explanation coefficient (R2) was obtained by analyzing the linear regression of the functions between day to harvest and the predicted values equal to 0.91.
Conclusion
The results showed that the model could well predict the phenological stages of the faba bean, with the exception of the day to the emergence. This prediction was at the highest level in the stages leading to bean harvest, so that the highest coefficient of explanation with a value of 0.91 was found for the number of days to bean harvest. Our study showed that the above model cannot predict well the maximum leaf area index, yield, biological yield and harvest index in dune weather conditions and under our farm experiments.

کلیدواژه‌ها [English]

  • Faba bean
  • Modeling
  • Phonological stages
  • yield
1. Aryakia, E., Torabi, B., and Aryakia, A. 2017. Evaluating the simulate and prediction model of chitti bean (Phaseolus vulgaris L.) grain yield. Iranian Journal of Field Crop Science 48(3): 591-600. (In Persian with English Summery).
2. Bagheri, V., and Torabi, B. 2015. A simple model for simulation of growth, development and yield of faba bean in Golestan Province. Electronic Journal of Crop Production 8(2): 133-152. (In Persian with English Summary).
3. Boote, K.G., Jones, J.W., and Pickering, N.B. 1996. Potential uses and limitation of crop models. Agronomy Journal 88(5): 704-716.
4. Fehr, W.R., and Cavienss, G.F. 1977. Stage of Soybean Development. Special Report 80, Cooperative Extension. Low State University Ameslowa. 110 pp.
5. Hundale, S.S., and Kaur, P. 1997. Application of CERES-Wheat model to yield productions in the irrigated plains of the Indian-Punjab. The Journal of Agricultural Science 129: 13-18.
6. Jafarnodeh, S., Zeinali, E., Soltani, A., and Sheikh, F. 2017. The effect of seed size and seeding date on the phenological, morphological and agronomic characteristics of faba bean under rainfed conditions in Gorgan. Agricultural Crop Management 19(1): 87-103. (In Persian with English Summary).
7. Majnoon Hosseini, N. 2008. Legumes in Iran. Jihad Daneshgahi. Press, 148p. (In Persian).
8. Rahemi Karizaki A., and Soltani, A. 2005. Allometric relationships between leaf area and vegetative qualities in plant chickpea. In: Proceeding of the First National Conference on Pulse in Iran. 20-21 Novamber 2005. Research Center for Plant Sciences. Ferdowsi University of Mashhad Mashhad, Iran. (In Persian with English Summary)
9. Rahemi Karizaki, A. 2011. Investigation the Changes of Physiological and Morphological Traits Associated with Wheat (Triticum aestivum L.) Yield. A Thesis Ph.D, Sciences and Natural Resources Gorgan University Agricultural. 104 p. (In Persian).
10. Sinclair, T.R., and Muchow, R.C. 1999. Radiation use efficiency. Advance in Agronomy 65: 215-265.
11. Sinclair, T.R., and Seligman, G. 1996. Crop modeling: from infancy to maturity. Agronomy Journal 88(5): 698-704.
12. Soltani, A., Ghassemi-Golezani, K., Rahimzadeh-Khooie, F., and Moghaddam, M. 1999. A simple model for chickpea growth and yield. Journal Field Crops Research 62(2): 213-224.
13. Soltani, A., Roberston, M.J., Mohammad-Nejad, Y., and Rahemi-Karizaki, A. 2006. Modeling ckickpea growth and development: leaf production and senescence. Field Crops Research 99(1): 1-33.
14. Torabi, B. 2004. Prediction of Phenological Development in Chickpea. MSc. Thesis, Agricultural Sciences and Natural Resources University of Gorgan, Gorgan, Iran. (In Persian).
15. Turpin, J.E., Robertson, M.J., Hillcoat, N.S., and Herridge, D.F. 2002. Faba bean (Vicia faba L.) in Australia’s northern grains belt: canopy development, biomass, and nitrogen accumulation and partitioning. Australian Journal Agriculture Research 53(2): 227-237.
16. Van Ittersum, M.K., Leffelaar, P.A., Van Keulen, H., Kropff, M.J., Bastiaans L., and Goudriaan, J. 2003. On approaches and applications of the Wageningen crop models. European Journal Agronomy 18(3): 201-234.
17. Xue, C.Y., Yang, X.G., Bouman, B.A.M., Deng, W., Zhang, Q.P., Yan, W.X., Zhang, T., Rouzi, A., and Wang, H. 2008. Optimizing yield, water requirements, and water productivity of aerobic rice for the North China Plain. Irrigation Science 26: 459-474.
CAPTCHA Image