ارزیابی عملکرد و اجزای عملکرد دانه ژنوتیپ‌های باقلا (Vicia faba L.) با استفاده از روش‌های آماری چندمتغیره

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی واحد رشت

2 سازمان تحقیقات آموزش وترویج جهادکشاورزی

3 دانشگاه تهران

چکیده

آزمایش حاضر به‌منظور بررسی روابط بین عملکرد و اجزای عملکرد 26ژنوتیپ باقلا در استان لرستان به‌صورت طرح بلوک‌های کامل تصادفی با سه تکرار در سال زراعی94-1393 انجام شد. نتایج برآورد ضرایب همبستگی نشان داد که عملکرد دانه با صفات تعداد روز تا جوانه‌زنی، تعداد روز تا گلدهی، ارتفاع بوته، تعداد غلاف در بوته، تعداد گره در بوته، وزن100دانه، طول غلاف، عملکرد بیولوژیک و شاخص برداشت همبستگی مثبت داشت. بر اساس نتایج تجزیه رگرسیون، صفات ارتفاع بوته، تعداد غلاف در بوته، تعداد شاخه در بوته، تعداد گره در شاخه، تعداد دانه در غلاف، وزن100دانه و طول غلاف می‌توانند به‌‌عنوان متغیرهای پیشگویی‌‌کننده‌ برای عملکرد دانه وارد مدل شوند. تجزیه علیت نشان داد که ارتفاع بوته(51/0)، تعداد غلاف در بوته(51/0)، تعداد گره در شاخه(11/0)، تعداد دانه در غلاف(20/0)، وزن100دانه(34/0) و طول غلاف(41/0) اثرات مستقیم مثبت بر عملکرد دانه دارد. در مجموع بایستی به صفاتی مانند ارتفاع بوته، تعداد غلاف در بوته، تعداد گره در شاخه و طول غلاف برای افزایش عملکرد دانه توجه شود و این صفات می‌توانند به‌عنوان شاخص‌های انتخاب در برنامه‌های اصلاح باقلا استفاده شوند. تجزیه به مؤلفه‌های اصلی شش مؤلفه را معرفی کرد که حدود80درصد از تغییرات را توجیه می‌نمود. توزیع ژنوتیپ‌ها در فضای نمودار دوبعدی (بای‌پلات)، وجود تنوع ژنتیکی بالای بین ژنوتیپ‌ها را از نظر صفات مورد مطالعه نشان داد. در مجموع، می‌توان اظهار داشت که ژنوتیپ‌های با عملکرد بالا شامل 9 و 22 می‌توانند برای بهبود عملکرد دانه باقلا استفاده شوند و سبب افزایش تولید این محصول شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Study the relationships between yield and yield component of faba bean (Vicia faba L.) genotypes by multivariate analyses

نویسندگان [English]

  • Peyman sharifi 1
  • Hossein Astaraki 2
  • Fatemeh Sheikh 2
  • Ali Izadi-Darbandi 3
1 Islamic Azad University
2 Education and Extension Organization (AREEO)
3 University of Tehran
چکیده [English]

Introduction
Faba bean (Vicia faba L.) is a major crop legume that is used as food owing to the high nutrient components in seeds. Yield improvement is a major breeding objective of most crop breeding programs. Multivariate analyses are useful for characterization, evaluation and classification of plant genetic resources when a number of accessions are to be assessed for several characters of agronomic, morphological and physiological importance. Different types of multivariate analysis such as regression analysis, path analysis, principal component analysis (PCA) can be used to identify groups of genotypes that have beneficial traits for breeding and instructing the patterns of variation in genotype accession, to recognize relationships among accessions and possible gaps. Correlation coefficients describe the mutual relationships between different pairs of characters without providing the nature of cause and effect relationship of each character. Path analysis was also performed to determine the direct and indirect contribution of each character to seed yield. Principal component analysis has been widely used in the studies of variability in germplasm collections of many species. The objective of the present study was to estimate the correlations and partition of the coefficient of correlation between seed yield with its primary components, into direct and indirect effects to determine the relative importance of each one in faba bean seed yield. The other aims of the present study are to assess the genetic diversity present in the morphological and agronomical traits in 26 faba bean genotypes by principal component analysis.
 
Materials & Methods
This study was carried out during 2015-16 growing season in Lorestan province, Iran (longitude, 48° 45´ E; Latitude, 35° 55´ N; Altitude, 1629 m above sea level). Experimental material comprised 26 genotypes of faba bean. Field experiments were conducted in a randomized complete block design with three replications. Each plot consisted of four rows with 4 m long and distance between rows and plants were 50 and cm, respectively. The characters included days to germination, days to flowering, days to maturity, plant height, number of stems per plant, number of node per stem, number of seeds per pod, number of seeds per plant, hundred seed weight, pod length, dry seed yield, biological yield and harvest index were measured before and after harvesting. SAS 9.2 used to analyses the correlation and regression coefficients. Path coefficients were estimated by path analysis software. Principal components analysis was done using SPSS and the graphs were drawn via Minitab.
 
 
 
Results & Discussion
 The analysis of variance indicated significant differences between genotypes for all of the studied traits. Correlation analysis indicated there were positive correlation coefficients between seed yield and number of days to germination, number of days to flowering, plant height, number of pods per plant, number of nodes per stem, hundred seed weight, pod length, biological yield and harvest index. Regression analysis indicated seed yield as dependent variable, while plant height, number of pods per plant, number of stems per plant, number of nodes per stem, number of seeds per pod, hundred seed weight and pod length were considered as casual variables. Path coefficient analysis indicated plant height (0.74), number of pod per plant (0.51), number of nodes per stem (0.11), number of seeds per pod (0.20), hundred seed weight (0.34) and pod length (0.41) had positive direct effects on seed yield. The results of principal component analysis showed that the eigenvalues were reduced with the increase of the number of PCs. Principal components analysis, identified six components that explained 80% of total variation. The maximum values of eigenvalues were obtained for first three PCs, which accounted for a cumulative percentage of total variance of 24.34%, 17.57% and 14.18%, respectively. The remaining percentage of the total variation decreased sharply. The eigenvalue of the first principle component had a variance of 4.14, while the other two components had much smaller variances. It could be said that the first principal component is by far the most important of the three and that the first principal component include the largest variance of any one unit the length linear combination of the observed variable. The first two and three PCs was used to grouping the genotypes in two and three-dimensional plots, respectively.
 
Conclusion
Attention should be paid to traits such as plant height, number of pods per plant, number of nodes per stem and pod length for augmentation of seed yield and these traits could be used as selection criteria in faba bean breeding programs. Tow dimensional plot based on first two principal components showed genetically different genotypes by the pattern on scattering. It could be concluded that the high yielding genotypes, such as 9 and 22 could be used to improve seed yield of faba bean and making possibilities of extending production of this legume crop.

کلیدواژه‌ها [English]

  • Correlation
  • Faba bean
  • Regression
  • Path analysis
  • Principal component
  • yield
1. Alghamd, S.S. 2007. Genetic behavior of some selected faba bean genotypes. African Crop Science Conference Proceedings 8: 709-714.
2. Amini, A., Ghanadha, M.R., and Abdmishani, S. 2002. Genetic variation and correlation between different traits in common bean. Journal of Agricultural Sciences 33: 605-615. (In Persian with English Summary).
3. Azarpour, E., Bidarigh, S., Moraditochaee, M., Khosravi Danesh, R., Bozorgi H.R., and Bakian, M. 2012. Path coefficient analysis of seed yield and its components in faba bean (Vicia faba L.) under nitrogen and zinc fertilizer management. International Journal of Agriculture and Crop Sciences 4(21): 1559-1561.
4. Badolay, A., Hooda, J.S., and Malik, B.P.S. 2009. Correlation and path analysis in faba bean (Vicia faba L.). Journal of Haryana Agronomy 25: 94-95.
5. Chaieb, N., Bouslama, M., and Messaoud, M. 2011. Growth and yield parameters variability among faba bean (Vicia faba L.) genotypes. Natural Production Plant Resources 4: 39-45.
6. Ghafari, M. 2004. Use of principal component analysis method for selection of superior three way cross hybrids in sunflower. Seed and Plant 19(4): 513-527.
7. Hair, J.R., Anderson, R.E., Tatham, R.L., and Black, W.C. 1995. Multivariate Data Analysis with Readings. Prentice Hall, Englewood, NJ.
8. Hashemi, M., and Mohammady, S. 2016. Evaluation of grain yield and yield components in some imported faba bean genotypes (Vicia faba L.). Journal of Crop Breeding 8(18): 97-103. (In Persian with English Summary).
9. Kanouni, H., and Malhotra, R. 2003. The study of genetic diversity and relationships among agronomic traits in chickpea genotypes under dryland conditions. Journal of Crop Science 5: 1-11. (In Persian with English Summary).
10. Kumar, P., Das, R.R., Bishnoi, S.K., and Sharma, V. 2017. Inter-correlation and path analysis in faba bean (Vicia faba L.). Electronic Journal of Plant Breeding 8(1): 395-397.
11. Maalouf, F., Khalil, S., Ahmad, S., Akintunde, A., Kharrat, N.M., Shamaa, K.E., Hajjar, S., and Mahotra, R.S. 2011. Yield stability of faba bean lines under diverse broomrape prone production environments. Field Crops Research 124: 288-294.
12. Mohammadi, S.A., Prasanna, B.M., and Singh, N.N. 2003. Sequential path model for determining interrelationships among grain yield and related characters in maize. Crop Science 43: 1690-1697.
13. Ouji, A., Rouaissi, M., Abdellaoui, R., and El Gazzah, M. 2011. The use of reproductive vigor descriptors in studying genetic variability in nine Tunisian faba bean (Vicia faba L.) populations. African Journal of Biotecnology 10(6): 896-904.
14. Rasheed, S., Hanif, M., Sadiq, S., Abbas, GH. Jawad Asghar, M., and Ahsanul Haq, M. 2008. Inheritance of seed yield and related traits in some lentil (Lens culinaris Medik) genotypes. Pakistan Journal of Agricultural Sciences 45(3): 49-52.
15. Ringner, M. 2008. What is principal component analysis? Nature Biothechnology 26: 303-304.
16. Pirzadeh Moghaddam, M., Bagheri, A., Malekzadeh-Shafaroudi, S., and Ganjeali, A. 2014. Multivariate statistical analysis in chickpea (Cicer arietinum L.) under limited irrigation. Iranian Journal of Pulses Research 5(2): 99-110. (In Persian with English Summary).
17. Sabori, H., Mohammadinejad, G., and Fazlalipour, M. 2011. Selection for improve rice yield by multivariate analysis. Iranian Journal of Field Crops Research 9(4): 639-650. (In Persian with English Summary).
18. Sarparast, R., Sheikh, F., and Sowghi, H.A. 2011. Investigation of genotype and environment interaction and cluster analysis for seed yield in different lines of faba bean (Vicia faba L.). Iranian Journal of Pulses Research 2(1): 99-106.
19. Sharifi, P. 2014. Correlation and path coefficient analysis of yield and yield component in some of broad bean (Vicia faba L.) genotypes. Genetika 46(3): 905-914.
20. Sharifi, P., and Aminpanah, H. 2014. A study on the genetic variation in some of faba bean genotypes using multivariate statistical techniques. Tropical Agriculture (Trinidad) 91(2): 87-97.
21. Sharifi, P., Astereki, H., and Safari Motlagh, M.R. 2014. Evaluation of genotype, environment and genotype×environment interaction effects on some of important quantitative traits of faba bean (Vicia faba L.). Journal of Crop Breeding 6(13): 73-88. (In Persian with English Summary).
22. Tadayyon, A., Hashemi, L., and Khodambashi, M. 2011. Effective morphological and phenological traits on seed and biological yield in lentil genotypes in Shahrekord region. Iranian Journal of Pulses Research 2(2): 47-62. (In Persian with English Summary).
23. Tadesse, T., Fikere, M., Legesse, T., and Parven, A. 2011. Correlation and path coefficient analysis of yield and its component in faba bean (Vicia faba L.) germplasm. International Journal of Biodiversity Conservation 3: 376-382.
24. Turpin, J.E., Robertson, M.J., Hillcoat, N.S., and Herridage, D.E. 2002. Faba bean (Vicia faba L.) in Australia northern grains belt: canopy development, biomass and nitrogen accumulation and partitioning. Auh Journal of Agriculture 53: 227-237.
25. Ulukan, H., Mustafa, G., and Siddik, K. 2003. A path coefficient analysis some yield and yield components in faba bean (Vicia faba L.) genotypes. Pakistan Journal of Biological Science 6: 1951-1955.
26. Wright, S. 1921. Correlation and causation. Journal of Agricultural Research 20: 557-585.
27. Yadav, R.B., Dubey, R.K., Srivastava, M.K., and Sharma, K.K. 1995. Path coefficient analysis under three densities in rice. Journal of Soils and Crops 5(1): 43-45.
CAPTCHA Image