Quantification of Pretreatment Effects of Potassium Silicate on Germination and Growth Indices of Faba Bean (Vicia faba L.) under Salinity Stress Using Empirical Models

Document Type : Original Article

Authors

1 Department of Agronomy and Plant Breeding, Faculty of Agriculture, Ilam University, Ilam, Iran

2 Faculty of Agriculture, University of Wasit, Iraq

Abstract

Introduction
Salinity stress is one of the limiting factors for plant growth and production in arid and semi-arid regions of the world. The use of potassium silicate as the second most common element in soil is one of the strategies used to reduce the effects of environmental stresses such as salinity. Considering the increasing challenge of water and soil salinity and its limiting effects on the growth, development, and production of faba bean, the aim of this study was to investigate the effects of potassium silicate on improving germination and growth indices, and to determine the tolerance threshold of faba bean seeds to salinity stress.
 
Materials and Methods
A factorial experiment was conducted based on completely randomized design with four replications at the Laboratory of Ilam University, Iran, in 2024. The experimental factors were included potassium silicate at four levels (0, 50, 100, and 150 mg.l-1) and five levels of salinity stress (0, 1, 4, 8, and 10 dS.m-1). The germination criterion was the protrugen of a radicle length up to 2 mm. At the end of the experiment, germination indices (germination percentage, germination rate, seed vigor index) and seedling growth (root and seedling dry weight and length) were measured.
 
Results and Discussion
The application of potassium silicate under non-salinity stress conditions (salinity of 0 and 1 dS.m-1) had no significant effect on the germination percentage of faba bean seeds; however, the germination percentage increased by 20.7, 23.8, and 26.7 percent with the application of 150 mg.l-1 of potassium silicate under salinity stress conditions of 4, 8, and 10 dS.m-1, respectively. The germination rate of faba bean seeds under non-salt stress conditions was not affected by pretreatment with potassium silicate. The germination rate of faba bean seeds with application of 150 mg.l-1 of potassium silicate under salinity stress conditions of 8 and 10 dS.m-1 was 23.9 and 26.7 percent higher than without its application, respectively. Under non-salinity stress conditions, application of 100 mg l-1 potassium silicate increased the vigor index of faba bean seeds by 25.4% compared to the control. Under salinity stress conditions of 8 dS.m-1, application of 50 and 150 mg l-1 potassium silicate improved the vigor index of faba bean seeds by 73.7% and 79.0%, respectively. Salinity stress at levels of 1, 4, 8, and 10 dS.m-1 reduced the length of faba bean rootlets by 21.8, 39.7, 44.2, and 60.0%, respectively, compared to the absence of salinity stress. The highest shoot dry weight (0.414 g.plant-1) was observed with the application of 100 mg.l-1 potassium silicate under non-salt stress conditions, which was 8.5% higher compared to the control. Under 10 dS.m-1 salt stress conditions, the application of 100 and 150 mg.l-1 potassium silicate improved the shoot dry weight of faba bean by 86.5 and 66.5% compared to the control. The highest root dry weight (0.419 g.plant-1) was observed with the application of 100 mg.l-1 potassium silicate under no salt stress conditions, which was 11.5% higher compared to control. Under 10 dS.m-1 salt stress conditions, the application of 100 and 150 mg l-1 potassium silicate improved the dry weight of faba bean root by 60.1 and 65.6% compared to the control. According to the Moss and Hoffman’s equation, the tolerance threshold to salinity stress in faba bean based on relative germination without the application of potassium silicate was 0.52 and its decreasing slope was 5.48. The threshold of tolerance to salinity stress in faba bean with the application of 50, 100, and 150 mg.l-1 of potassium silicate was 0.62, 0.22, and 1.32 and its decreasing slope was 5.5, 93.4, and 22.4, respectively. Based on the three-parameter sigmoid model, the salinity stress that reduced bean seed germination by 50% by applying different amounts of 0, 50, 100, and 150 mg.l-1 of potassium silicate was 8.75, 9.41, 9.38, and 10.10 dS.m-1, respectively.
 
Conclusions
It can be concluded that the faba bean plant is sensitive to salinitySeed priming with potassium silicate at concentrations of 100 and 150 mg.l⁻¹ effectively mitigates salt stress in faba bean and significantly enhances the plant's tolerance to salinity.

Keywords

Main Subjects


©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

Abayechaw, D., & Wulchafo, K. (2020). Germination test and seed rate determination on pulse crops. International Journal of Current Research and Academic Review8, 113-123.‏ https://doi.org/10.20546/ijcrar.2020.805.012
Abdelkader, A. A., Khalil, M. S., & Mohamed, M. S. (2022). Simultaneous biodegradation of λ-cyhalothrin pesticide and Vicia faba growth promotion under greenhouse conditions. AMB Express12(1), 44.‏ https://doi.org/10.1186/s13568-022-01383-0
Afzal, M., Alghamdi, S. S., Migdadi, H. H., El-Harty, E., & Al-Faifi, S. A. (2022). Agronomical and physiological responses of faba bean genotypes to salt stress. Agriculture12(2), 235.‏ https://doi.org/10.3390/agriculture12020235
Ahmed, E. Z., & Sattar, A. M. A. E. (2024). Improvement of Vicia faba plant tolerance under salinity stress by the application of thiamine and pyridoxine vitamins. Scientific Reports14(1), 22367.‏ https://doi.org/10.1038/s41598-024-72511-y
Anaya, F., Fghire, R., Wahbi, S., & Loutfi, K. (2018). Influence of salicylic acid on seed germination of Vicia faba L. under salt stress. Journal of the Saudi Society of Agricultural Sciences17(1), 1-8.‏ https://doi.org/10.1016/j.jssas.2015.10.002
Anderson, D. R., & Burnham, K. P. (2002). Avoiding pitfalls when using information-theoretic methods. The Journal of Wildlife Management, 66(3), 912-918.‏ https://doi.org/10.2307/3803155
Anderson, R., Bayer, P. E., & Edwards, D. (2020). Climate change and the need for agricultural adaptation. Current Opinion in Plant Biology56, 197-202.‏ https://doi.org/10.1016/j.pbi.2019.12.006
Banakar, M. H., Ranjbar, G. H., & Sarafraz Ardakani, M. R. (2021). Determination of salt tolerance threshold of different fenugreek (Trigonella Foenum-graecum L.) ecotypes at germination stage using experimental models. Journal of Plant Research (Iranian Journal of Biology)34(4), 861-882. (In Persian with English Abstract). https://dor.isc.ac/dor/20.1001.1.23832592.1400.34.4.10.3
Basra, S. M. A., Farooq, M., Tabassam, R., & Ahmad, N. (2005). Physiological and biochemical aspects of pre-sowing seed treatments in fine rice (Oryza sativa L.). Seed Science and Technology33(3), 623-628.‏ https://doi.org/10.15258/sst.2005.33.3.09
Bavarsadi, M., Modhej, A., & Majdam, M. (2017). Investigation the effect of salinity tension on germination, seedling growth and ionic content of alfalfa genotypes (Medicago sativa L.). Crop Physiology Journal9(35), 121-136.‏
Bekhiet, A. M., Helmy, A. M., Fouda, S. E., & Azzam, C. R. (2022). Evaluation of salinity tolerance of some Egyptian Faba bean varieties during the germination stage. Current Investigations in Agriculture and Current Research10, 1316-1328.‏
Cafaro, V., Alexopoulou, E., Cosentino, S. L., & Patane, C. (2023). Germination response of different castor bean genotypes to temperature for early and late sowing adaptation in the mediterranean regions. Agriculture13(8), 1569.‏ https://doi.org/10.3390/agriculture13081569
Chauhan, B. S. & Johnson, D. E. (2008). Germination ecology of Chinese sprangletop (Leptochloa chinensis) in the Philippines. Weed Science, 56(6), 820-825.‏ https://doi.org/10.1614/WS-08-070.1
Dagar, J. C., Yadav, R. K., & Sharma, P. C. (Eds.). (2019). Research Developments in Saline Agriculture. p. 926. Singapore: Springer.‏
De la Reguera, E., Veatch, J., Gedan, K., & Tully, K. L. (2020). The effects of saltwater intrusion on germination success of standard and alternative crops. Environmental and Experimental Botany180, 104254.‏ https://doi.org/10.1016/j.envexpbot.2020.104254
Dhiman, P., Rajora, N., Bhardwaj, S., Sudhakaran, S. S., Kumar, A., Raturi, G., Chakraborty, K., Gupta, O., Devanna, B. N., Tripathi, D. K., & Deshmukh, R. (2021). Fascinating role of silicon to combat salinity stress in plants: An updated overview. Plant Physiology and Biochemistry162, 110-123.‏ https://doi.org/10.1016/j.plaphy.2021.02.023
El Boukhari, M. E. M., Barakate, M., Choumani, N., Bouhia, Y., & Lyamlouli, K. (2021). Ulva lactuca extract and fractions as seed priming agents mitigate salinity stress in tomato seedlings. Plants, 10(6), 1104.‏ https://doi.org/10.3390/plants10061104
El-Badri, A. M., Batool, M., Mohamed, I. A., Khatab, A., Sherif, A., Wang, Z., Salah, A., Nishawy, E., Ayaad, M., Kuai, J., Wang, B., & Zhou, G. (2021). Modulation of salinity impact on early seedling stage via nano-priming application of zinc oxide on rapeseed (Brassica napus L.). Plant Physiology and Biochemistry166, 376-392.‏ https://doi.org/10.1016/j.plaphy.2021.05.040
Ellis, R. H., & Roberts, E. H. (1981). The quantification of ageing and survival in orthodox seeds. Seed Science and Technology (Netherlands), 9(2), 373-409.‏
El-Mogy, M. M., Garchery, C., & Stevens, R. (2018). Irrigation with salt water affects growth, yield, fruit quality, storability and marker-gene expression in cherry tomato. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science68(8), 727-737.‏ https://doi.org/10.1080/09064710.2018.1473482
Etesami, H., & Adl, S. M. (2020). Can interaction between silicon and non–rhizobial bacteria help in improving nodulation and nitrogen fixation in salinity–stressed legumes? A review. Rhizosphere15, 100229.‏ https://doi.org/10.1016/j.rhisph.2020.100229
Farooq, M., Hussain, M., Nawaz, A., Lee, D. J., Alghamdi, S. S., & Siddique, K. H. (2017a). Seed priming improves chilling tolerance in chickpea by modulating germination metabolism, trehalose accumulation and carbon assimilation. Plant Physiology and Biochemistry111, 274-283.‏ https://doi.org/10.1016/j.plaphy.2016.12.012
Farooq, M., Gogoi, N., Hussain, M., Barthakur, S., Paul, S., Bharadwaj, N., Migdadi, H. M., Alghamdi, S. S., & Siddique, K. H. (2017b). Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiology and Biochemistry118, 199-217.‏ https://doi.org/10.1016/j.plaphy.2017.06.020
Gao, H. J., Yang, H. Y., Bai, J. P., Liang, X. Y., Lou, Y., Zhang, J. L., Wang, D., Zhang, J. L., Niu, S. Q., & Chen, Y. L. (2015). Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress. Frontiers in Plant Science5, 787.‏ https://doi.org/10.3389/fpls.2014.00787
Gong, D., Zhang, X., Yao, J., Dai, G., Yu, G., Zhu, Q., Guo, Q., & Zheng, W. (2021). Synergistic effects of bast fiber seedling film and nano-silicon fertilizer to increase the lodging resistance and yield of rice. Scientific Reports11(1), 12788.‏ https://doi.org/10.1038/s41598-021-92342-5
Hafez, E. M., Osman, H. S., El-Razek, U. A. A., Elbagory, M., Omara, A. E. D., Eid, M. A., & Gowayed, S. M. (2021). Foliar-applied potassium silicate coupled with plant growth-promoting rhizobacteria improves growth, physiology, nutrient uptake and productivity of faba bean (Vicia faba L.) irrigated with saline water in salt-affected soil. Plants10(5), 894.‏ https://doi.org/10.3390/plants10050894
Ibrahim, E. A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology192, 38-46.‏ https://doi.org/10.1016/j.jplph.2015.12.011
ISTA. (2010). International Rules for Seed Testing, Rules, 2010. International Seed Testing Association (ISTA) Seed Science and Technology. Zurich. Switzerland.
Johnston, C., Leong, S. Y., Teape, C., Liesaputra, V., & Oey, I. (2024). Low-intensity pulsed electric field processing prior to germination improves in vitro digestibility of faba bean (Vicia faba L.) flour and its derived products: A case study on legume-enriched wheat bread. Food Chemistry449, 139321.‏ https://doi.org/10.1016/j.foodchem.2024.139321
Karunakaran, G., Suriyaprabha, R., Manivasakan, P., Yuvakkumar, R., Rajendran, V., Prabu, P., & Kannan, N. (2013). Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination. IET Nanobiotechnology7(3), 70-77.‏ https://doi.org/10.1049/iet-nbt.2012.0048
Kaur, S., Suhalia, A., Sarlach, R. S., Shamshad, M., Singh, P., Grover, G., Brar, A., & Sharma, A. (2022). Uncovering the Iranian wheat landraces for salinity stress tolerance at early stages of plant growth. Cereal Research Communications50(4), 895-904.‏ https://doi.org/10.1007/s42976-022-00245-6
Keshtiban, R. K., Carvani, V., & Imandar, M. (2014). Effects of salinity stress and drought due to different concentrations of sodium chloride and polyethylene glycol 6000 on germination and seedling growth characteristics of chickpea (Cicer arietinum L.). Advances in Environmental Biology, 8(24), 413-420.‏
Kuai, J., Sun, Y., Guo, C., Zhao, L., Zuo, Q., Wu, J., & Zhou, G. (2017). Root-applied silicon in the early bud stage increases the rapeseed yield and optimizes the mechanical harvesting characteristics. Field Crops Research200, 88-97.‏ https://doi.org/10.1016/j.fcr.2016.10.007
Kukric, T. N., Marjanovic, J. A. M., Nikolic, Z. T., & Jovicic, D. D. (2023). A comparative study on salt stress response of Camelina sativa and Carthamus tinctorius during germination. Journal of Agricultural Sciences (Belgrade)68(2), 141-154.‏ https://doi.org/10.2298/jas2302141k
Latef, A. A. A., Hasanuzzaman, M., & Tahjib-Ul-Arif, M. (2021). Mitigation of salinity stress by exogenous application of cytokinin in faba bean (Vicia faba L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca49(1), 12192-12192.‏ https://doi.org/10.15835/nbha49112192
Lotfi, R., & Ghassemi-Golezani, K. (2015). Influence of salicylic acid and silicon on seed development and quality of mung bean under salt stress. Seed Science and Technology43(1), 52-61.‏ https://doi.org/10.15258/sst.2015.43.1.06
Luyckx, M., Hausman, J. F., Lutts, S., & Guerriero, G. (2017). Silicon and plants: Current knowledge and technological perspectives. Frontiers in Plant Science8, 411.‏ https://doi.org/10.3389/fpls.2017.00411
Maalouf, F., Ahmed, S., & Bishaw, Z. (2021). Faba bean. In The Beans and the Peas. pp. 105-131. Woodhead Publishing.‏
Maas, E. V., & Grattan, S. R. (1999). Crop yields as affected by salinity. Agricultural Drainage38, 55-108.‏ https://doi.org/10.2134/agronmonogr38.c3
Maas, E. V., & Hoffman, G. J. (1977). Crop salt tolerance-current assessment. Journal of the Irrigation and Drainage Division, 103(2), 115-134.‏ https://doi.org/10.1061/JRCEA4.0001137
Maguire, J. D. (1962). Speed of germination-aid in selection and evaluation for seedling emergence and vigor.‏ Crop Science, 2, 176-177. https://doi.org/10.2135/cropsci1962.0011183X000200020033x
Meot-Duros, L., & Magne, C. (2008). Effect of salinity and chemical factors on seed germination in the halophyte Crithmum maritimum L. Plant and Soil, 313, 83-87.‏ https://doi.org/10.1007/s11104-008-9681-6
Mustafa, G., Akhtar, M. S., & Abdullah, R. (2019). Global concern for salinity on various agro-ecosystems. Salt Stress, Microbes, and Plant Interactions: Causes and Solution, 1, 1-19.‏ https://doi.org/10.1007/978-981-13-8801-9_1
Naseer, M. N., Rahman, F. U., Hussain, Z., Khan, I. A., Aslam, M. M., Aslam, A., Waheed, H., Khan, A. U., & Iqbal, S. (2022). Effect of salinity stress on germination, seedling growth, mineral uptake and chlorophyll contents of three Cucurbitaceae species. Brazilian Archives of Biology and Technology65, e22210213.‏ https://doi.org/10.1590/1678-4324-2022210213
Netondo, G. W., Onyango, J. C., & Beck, E. (2004). Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Science44(3), 806-811.‏ https://doi.org/10.2135/cropsci2004.8060
Nirmala, S., Mukesh, Y., Venkataraman, B. K., Kumar, S. R., & Kumar, J. P. (2016). Hybridization between salt resistant and salt susceptible genotypes of mungbean (Vigna radiata L. Wilczek) and purity testing of the hybrids using SSRs markers. Journal of Integrative Agriculture15(3), 521-527.‏ https://doi.org/10.1016/S2095-3119%2815%2961161-3
Omar, S. A., Feng, Y., Yu, M., Eldin, S. A. G., Eldenary, M. E., Shabala, S., Allakhverdiev, S., & Abdelfattah, M. H. (2024). Exogenous application of 5-azacitidin, royal jelly and folic acid regulate plant redox state, expression level of DNA methyltransferases and alleviate adverse effects of salinity stress on Vicia faba L. plants. Heliyon10(10).‏ https://doi.org/10.1016/j.heliyon.2024.e30934
Rawat, J., Sanwal, P., & Saxena, J. (2016). Potassium and its role in sustainable agriculture. In Potassium Solubilizing Microorganisms for Sustainable Agriculture.  pp. 235-253. New Delhi: Springer India.‏
Saadat, H., Sedghi, M., Seyed Sharifi, R., & Farzaneh, S. (2023). The effect of priming with different levels of chitosan on physiological and biochemical traits in french bean (Phaseolus vulgaris L.) under salinity stress.‏ Plant Production Technology, 14(2), 75-89. (In Persian). https://doi.org/10.22084/ppt.2023.26100.2075
Sabaghnia, N., & Janmohammadi, M. (2014). Graphic analysis of nano-silicon by salinity stress interaction on germination properties of lentil using the biplot method. Agriculture & Forestry/Poljoprivreda i Sumarstv, 60(3), 29-40.‏
Sahab, S., Suhani, I., Srivastava, V., Chauhan, P. S., Singh, R. P., & Prasad, V. (2021). Potential risk assessment of soil salinity to agroecosystem sustainability: Current status and management strategies. Science of the Total Environment764, 144164.‏ https://doi.org/10.1016/j.scitotenv.2020.144164
Sehrawat, N., Yadav, M., Singh, R., Aggarwal, D., & Devi, A. (2020). Drought and salinity stress as major threat for sustainable Mung bean production: Emerging challenges and future perspectives. Annals of Plant Sciences9(6), 3899-3906.‏
Shahzad, M., Zorb, C., Geilfus, C. M., & Muhling, K. H. (2013). Apoplastic Na+ in Vicia faba leaves rises after short‐term salt stress and is remedied by silicon. Journal of Agronomy and Crop Science199(3), 161-170.‏ https://doi.org/10.1111/jac.12003
Sharma, A. D., Rathore, S. V. S., Srinivasan, K., & Tyagi, R. K. (2014). Comparison of various seed priming methods for seed germination, seedling vigour and fruit yield in okra (Abelmoschus esculentus L. Moench). Scientia Horticulturae165, 75-81.‏ https://doi.org/10.1016/j.scienta.2013.10.044
Sharma, A. D., Thakur, M., Rana, M., & Singh, K. (2004). Effect of plant growth hormones and abiotic stresses on germination, growth and phosphatase activities in Sorghum bicolor (L.) Moench seeds. African Journal of Biotechnology3(6), 308-312.‏ https://doi.org/10.5897/AJB2004.000-2057
Shen, Q., Fu, L., Su, T., Ye, L., Huang, L., Kuang, L., Wu, L., Wu, D., Chen, Z., Zhang, G., & Zhang, G. (2020). Calmodulin HvCaM1 negatively regulates salt tolerance via modulation of HvHKT1s and HvCAMTA4. Plant Physiology183(4), 1650-1662.‏ https://doi.org/10.1104/pp.20.00196
Tao, Q., Lv, Y., Mo, Q., Bai, M., Han, Y., & Wang, Y. (2018). Impacts of priming on seed germination and seedling emergence of Cleistogenes songorica under drought stress. Seed Science and Technology46(2), 239-257.‏ https://doi.org/10.15258/sst.2018.46.2.06
Tavakkoli, E., Watts-Williams, S. J., Rengasamy, P., & McDonald, G. K. (2024). Eliciting the aboveground physiological regulation that underlies salinity tolerance in faba bean (Vicia faba L.). Environmental and Experimental Botany226, 105849.‏ https://doi.org/10.1016/j.envexpbot.2024.105849
Van Genuchten, M. V., & Hoffman, G. J. (1984). Analysis of crop salt tolerance data.‏ p. 285-271, In: I. Shainberg and J. Shalhevet (eds.). Soil Salinity under Irrigation- Process and Management. Springer-Verlag, NewYork, NY.
Wang, X. D., Ou-yang, C., Fan, Z. R., Gao, S., Chen, F., & Tang, L. (2010). Effects of exogenous silicon on seed germination and antioxidant enzyme activities of Momordica charantia under salt stress. Journal of Animal and Plant Sciences6(3), 700-708.‏‏
Wu, H., Guo, J., Wang, C., Li, K., Zhang, X., Yang, Z., Li, M., & Wang, B. (2019). An effective screening method and a reliable screening trait for salt tolerance of Brassica napus at the germination stage. Frontiers in Plant Science10, 530.‏ https://doi.org/10.3389/fpls.2019.00530
Zaid, A., Gul, F., Ahanger, M. A., & Ahmad, P. (2018). Silicon-mediated alleviation of stresses in plants. In Plant Metabolites and Regulation under Environmental Stress. pp. 377-387. Academic Press.‏
Zaki, F. S., Elsayed, A. E., Ahmed, A. M., & Khalid, K. A. (2024). Salinity stress and different types of nano silicon's effects on lupine morphology and biochemical accumulations. Biocatalysis and Agricultural Biotechnology55, 102997.‏ http://dx.doi.org/10.1016/j.bcab.2023.102997
Zhou, H., Shi, H., Yang, Y., Feng, X., Chen, X., Xiao, F., Lin, H., & Guo, Y. (2024). Insights into plant salt stress signaling and tolerance. Journal of Genetics and Genomics51(1), 16-34. https://doi.org/10.1016/j.jgg.2023.08.007
CAPTCHA Image