1. Aghaee, A., Moradi, F., Zare-Maivan, H., Zarinkamar,F., Irandoost, H. P., and Sharifi, P. 2011. Physiological responses of two rice (Oryza sativa L.) genotypes to chilling stress at seedling stage. African Journal of Biotechnology 10(39): 7617-7621.
2. Akhar, F. K., Bagheri, A., Moshtaghi, N., and Nezami, A. 2011. The effect of gamma radiation on freezing tolerance of Chickpea (Cicer arietinum L.) at in vitro culture. Journal of Biological and Environmental Sciences 5: 63-70.
3. Azymi, S., Sofalian, O., Jahanbakhsh, G.S., and Khomari, S. 2012. Effect of chilling stress on soluble protein, sugar and proline accumulation in cotton (Gossypium hirsutum L.) genotypes. International Journal of Agriculture and Crop Sciences 4(12): 825-830.
4. Bates, L.S., Waldren, R.P., and Teare, I.D. 1973. Rapid determination of proline for water stress studies. Plant Soil 39: 205-207.
5. Boo, H.O., Heo, B.G., Gorinstein, S., and Chon, S.U. 2011.Positive effects of temperature and growth conditions on enzymatic and antioxidant status in lettuce plants. Plant Science 181: 479-484.
6. Chaparzadeh, N., D'Amico, M.L., Khavari-Nejad, R.A., Izzo, R., and Navari-Izzo F. 2004. Antioxidative responses of Calendula officinalis L. under salinity conditions. Plant Physiology and Biochemistry 42: 695-701.
7. Cho, S.C., Chao, Y.Y., Hong, C.Y., and Kao, C.H. 2012. The role of hydrogen peroxide in cadmium- inhibited root growth of rice seedling. Plant Growth Regulation 66: 27-35.
8. Chohan, A., Parmar, U., and Raina, S. K. 2012. Effect of sodium nitroprusside on morphological characters under chilling stress in chickpea (Cicer arietinum L.). Journal of Environmental Biology 33: 695-698.
9. Chon, S.U., Boo, H.O., Heo ,B.G., and Gorinstein, S. 2012. Anthocyanin content and the activities of polyphenol oxidase, peroxidase and phenylalanine ammonia-lyase in lettuce cultivars. International Journal of Food Sciences and Nutrition 63(1): 45-48.
10. Dabrowska, G., Kata, A., Goc, A., Szechynska-Hebda, M., and Skrzypek, E. 2007. Characteristics of the plant ascorbate peroxidase family. Acta Biologica Cracoviensia Series Botanica 49(1): 7-17.
11. Ganjewala, D., Boba, S., and Raghavendra, A.S. 2008. Sodium nitroprusside affects the level of anthocyanin and flavonol glycosides in pea (Pisum sativum L. cv. Arkel) leaves. Acta Biologica Szegediensis 52(2): 301-305.
12. Gill, P.K., Sharma, A.D., Singh, P., and Bhullar, S.S. 2001. Effect of various abiotic stresses on the growth soluble sugar and water relations of sorghum seedlings grown in light and darkness. Bulgarian Journal of Plant Physiology 27: 72-84.
13. Hare, P.D., Cress, W.A., and Staden, V. 1999. Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. Journal of Experimental Botany 50: 413-434.
14. Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., and Ahmad, A. 2012. Role of proline under changing environments. Plant Signaling and Behavior 7(11): 1456-1466.
15. Hayat, S., Yadav, S., Wani, A.S., Irfan, M., Alyemini, M.N., and Ahmad, A. 2012. Impact of sodium nitroprusside on nitrate reductase, proline content, and antioxidant system in tomato under salinity stress. Horticulture, Environment and Biotechnology 53(5): 362-367.
16. Kovacik, J., Grz, J., Klejdus, B., Stork, F., Marchiosi, R., and Ferrarese-Filho, O. 2010. Lignification and related parameters in copper-exposed Matricaria chamomilla roots: role of H2O2 and NO in this process. Plant Science 179: 383-389.
17. Liu, X., Wang, L., Liu, L., Guo, Y., and Ren, H. 2011. Alleviating effect of exogenous nitric oxide in cucumber seedling against chilling stress. African Journal of Biotechnology 10: 4380-4386.
18. Mayer, A.M. 2006. Polyphenol oxidases in plants and fungi: Going places? Phytochemistry 67: 2318-2331.
19. Murgia, I., Tarantino, D., Vannini, C., Bracale, M., Carravieri, S., and Soave C. 2004. Arabidopsis thaliana plants overexpressing thylakoidalascorbate peroxidase show increased resistance to Paraquat induced photooxidative stress and to nitric oxide-induced cell death. The Plant Journal 38: 940-953.
20. Namvar, A., Sharif, R. S., and Khandan, T. 2011. Growth analysis and yield of chickpea (Cicer arietinum L.) in relation to organic and inorganic nitrogen fertilization. Ekologija 57: 97-108.
21. Palmieri, M.C., Sell, S, Huang, X., Scherf, M., Werner, T., Durner, J., and Lindermayer, C. 2008. Nitric oxide-responsive genes and promoters in Arabidopsis thaliana: a bioinformatics approach. Journal of Experimental Botany 59:177-186.
22. Rivero, R.M., Ruiz, J.M., Garcıa, P.C., Lopez-Lefebre, L.R., Sanchez, E., and Romero, L. 2001. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Science 160: 315-321.
23. Rosa, M., Prado, C., Podazza, G., Interdonato, R., Gonzalez, J.A., Hilal, M., and Prado, F.E. 2009. Soluble sugars: metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signaling and Behavior 4: 388-393.
24. Ruelland, E., and Zachowski, A. 2010. How plants sense temperature. Environmental and Experimental Botany 69: 225-232.
25. Shah, F., Huang, J., Cui, K., Nie, L., Shah, T., Wu, W., Wang, K., Khan, Z.H., Zhu, L., and Chen, C. 2011. Physiological and biochemical changes in rice associated with high night temperature stress and their amelioration by exogenous application of ascorbic acid (vitamin C). Australian Journal Crop Science 5(13): 1810-1816.
26. Siddiqui, M.H., Al-Whaibi, M.H., and Basalah, M.O. 2010. Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248(3): 447-455.
27. Simaei, M., Khavari-Nejad, R.A., Saadatmand, S., Bernard, F., and Fahimi, H. 2011. Effects of salicylic acid and nitric oxide on antioxidant capacity and proline accumulation in Glycine max L. treated with NaCl salinity. African Journal of Agricultural Research 6: 3775-3782.
28. Somogyi, M. 1952. Notes on sugar determination. Journal of Biological Chemistry 195: 19-23.
29. Strand, A., Hurry, V., Henkes, S., Huner, N., Gustafsson, P., Gardestrom, P., and Stitt, M. 1999. Acclimation of Arabidopsis leaves developing at low temperatures. Increasing cytoplasmic volume accompanies increased activities of enzymes in the Calvin cycle and in the sucrose biosynthesis pathway. Plant Physiology 119: 1387-1397.
30. Theocharis, A., Clement, C., and Barka, E.A. 2012. Physiological and molecular changes in plants grown at low temperatures. Planta 235(6): 1091-1105.
31. Wang, H., Zhang, S., Zhang, W., Wei, C., and Wang, P. 2010.Effects of nitric oxide on the growth and antioxidant response of submerged plants Hydrilla verticillata (Lf) Royle. African Journal of Biotechnology 9: 7470-7476.
32. Wang, Y., Wisniewski, M., Meilan, R., Cui, M., Webb, R., and Fuchigami, L. 2005. Overexpression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress. Journal of the American Society for Horticultural Science 130(2): 167-173.
33. Windt, C.W., and Hasselt, P.R. 1999.Development of frost tolerance in winter wheat as modulated by differential root and shoot temperature. Plant Biology 1: 573-580.
Send comment about this article