The Effect of Foliar Application of Cycocel on Quantitative Traits Related to the Yield of Mung Bean (Vigna radiata) Genotypes under Water Deficit Conditions

Document Type : Original Article

Authors

1 Department of Plant Production and Genetics, Faculty of Agriculture, University of Birjand, Birjand, Iran

2 Department of Plant Production and Genetics, Plant and Environmental Stresses Research Group, Faculty of Agriculture, University of Birjand, Birjand, Iran

Abstract

Introduction
Drought is one of the most important non-living stresses that has an adverse effect on crop production and their quality and leads to osmotic, ionic, and nutritional limitations as well as growth delay, metabolic disorders and oxidative stress in plants. Iran has a dry and semi-arid climate and the occurrence of drought stress during the growth period of plants is inevitable. Presently, the production of legumes in the country is mostly under rainfed conditions and drought stress is one of the main factors reducing the yield of legumes. Mung bean is a small grain of valuable legume. Evaluation of the performance of different cultivars is considered a starting point in identifying drought-resistant cultivars. Cycocel is one of the most important growth retarders for tampering with growth and performance. Therefore, the present study was conducted to investigate the effect of foliar application of cycocel on quantitative traits of mung bean (Vigna radiata) genotypes under water deficit conditions.
 
Materials and Methods
In order to investigate the effect of foliar application with cycocel and water requirements on quantitative traits of mung bean (Vigna radiata) genotypes, experiental desing of split-split plot based on a randomized complete block design with three replications in research farm of the Ferdowsi University of Mashhad. Experimental factors included 3 levels of drought (non-stress, mild stress, and severe stress), 3 levels of cycocel foliar spraying (0, 400, and 800 mg/L), and 2 levels of mung bean cultivars (Hendi landrace and Zarbakhsh). Statistical analysis was performed using SAS 9.4 and comparing the means was based on the LSD method at a 5% probability level.
 
Results and Discussion
The experimental results showed that the effect of drought stress, cycocel, genotype, and the interaction of drought stress and cycocel as well as drought stress and genotype on the number of pods per plant were significant. The results showed that drought stress reduced the number of pods in the plant and cycocel increased it. The number of pods in the plant of the Hendi landrace genotype decreased more than that of the Zarbakhsh genotype due to drought stress. Also, drought stress, cycocel, genotype, and the interaction of drought stress and cycocel as well as drought stress and genotype on the number of seeds in the pod, were significant. The results showed that cycocel increased the number of seeds per pod, while drought stress decreased the number of pods per plant. It was also found that at all levels of drought stress, the Zarbakhsh genotype had more seeds in pods than the Hendi landrace genotype. Drought stress, cycocel, genotype, and the interaction of drought stress and cycocel as well as drought stress and genotype had a significant effect on the 1000-seed weight. The results showed that the 1000-seed weight increased due to the application of cycocel, while drought stress decreased this trait. In addition, it was observed that the 1000-seed weight of the Hendi landrace genotype decreased more than the Zarbakhsh genotype due to drought stress. Drought stress, cycocel, genotype, and interaction between drought stress and cycocel had a significant effect on grain yield. The results showed that the grain yield in the Zarbakhsh genotype was significantly higher than in the Hendi landrace genotype. It was also observed that drought stress decreased and the application of cycocel increased grain yield. Drought stress, cycocel, and genotype had a significant effect on biological performance. Drought stress caused a significant decrease in biological yield. The use of cycocel increased the biological performance and increasing the concentration of this substance increased the biological performance. The results of variance analysis of data showed that the effect of drought stress, cycocel, genotype, and the interaction of drought stress and cycocel, drought stress and genotype as well as cycocel and genotype on harvest index were significant. In addition, it was observed that the harvest index of the Hendi landrace genotype decreased more than the Zarbakhsh genotype due to drought stress.
 
Conclusions
According to the results of this study in the presence of drought stress, it showed a decrease in yield and its components. Among the studied mung bean cultivars, the Zarbakhsh cultivar showed superiority in tolerance to water shortage conditions compared to other cultivars. The use of cycocel reduced the negative effects of drought stress on the plant. It appeared that the use of cycocel under drought stress conditions improved the plant better plants performance.

Keywords

Main Subjects


©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

Ahmadi, M., Zare, M.J., & Emam, Y. (2019). Study of quantitative and qualitative traits of bread wheat by using of Cycocel, Zinc sulfate and bio-fertilizer application under dry land farming. Plant Ecophysiology, 11(38), 148-161. (In Persian with English Abstract)
Akbari, V., & Jalili Marandi, R. (2014). Effect of cycocel on growth and photosynthetic pigments of tow olive cultivars under different irrigation intervals. Journal of Horticultural Science, 27(4), 460-469. (In Persian). https://doi.org/10.22067/jhorts4.v0i0.30663
Anosheh, H.P., Emam, Y., Ashraf, M., & Foolad, M.R. (2012). Exogenous application of salicylic acid and chlormequat chloride alleviates negative effects of drought stress in wheat. Advanced Studies in Biology, 4(11), 501-520.
Ashraf, M. (2010). Inducing drought tolerance in plants: Recent advances. Biotechnology Advances, 28(1), 169-183. https://doi.org/10.1016/j.biotechadv.2009.11.005
Bahrami, K., Pirasteh-Anosheh, H., & Emam, Y. (2014). Yield and yield components responses of barley cultivars to foliar application of Cycocel. Journal of Crop Production and Processing, 4(12), 27-37. (In Persian). https://doi.org/10.47176/jcpp.10.3.20124  
Barzegari, M., Emam, Y., & Zamani, A. (2020). Yield components and grain yield responses of four wheat cultivars to growth retardant Cycocel under terminal drought stress conditions. Journal of Crop Production and Processing, 10(3), 139-156. (In Persian with English Abstract). https://doi.org/10.47176/jcpp.10.3.20124
Behradfar, A. (2014). The effect of foliar spraying of Cycocel, quintine and seaweed extract on spring safflower under different irrigation regimes. Ph.D. Thesis, Faculty of Agriculture, Urmia University, Iran. (In Persian with English Abstract)
Cattivelli, L., Rizza, F., Badeck, F.W., Mazzucotelli, E., Mastrangelo, A.M., Francia, E., Marè, C., Tondelli, A., & Stanca, A.M. (2008). Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Research, 105(1-2), 1-14. https://doi.org/10.1016/j.fcr.2007.07.004
El-Saadony, F.M., Mazrou, Y.S., Khalaf, A.E., El-Sherif, A.M., Osman, H.S., Hafez, E.M., & Eid, M.A. (2021). Utilization efficiency of growth regulators in wheat under drought stress and sandy soil conditions. Agronomy, 11(9), 1760. https://doi.org/10.3390/agronomy11091760
Emam, Y., Tafzali, A., & Karimi, H.R. (1996). The effect of chloromequat (Cycocel) on growth and development of wheat. Journal of Iranian Agronomy Sciences, 27, 23-30. (In Persian with English Abstract)
Espindula, M.C., Rocha, V.S., J. Grossi, A.S., Souza, M.A., Souza, L.T., & Favaroto, L.F. (2009). Use of growth retardants in wheat. Planta Daninha, 27(2), 379-387. https://doi.org/10.1590/S0100-83582009000200022
Fadaei, J., Faraji, A., Dadashi, M.R., & Siahmarguee, A. (2017). The response of mung bean crop (VC-1973A genotype) to planting date, plant density and irrigation in Gorgan condition. Iranian Journal Pulses Research, 8(1), 180-191. (In Persian with English Abstract). https://doi.org/10.22067/ijpr.v8i1.33490.
FAO. (2017). Food and agriculture organization of the United Nations. Rome, Italy.
Ferrante, A., Savin, R., & Slafer, G.A. (2020). Floret development and spike fertility in wheat: differences between cultivars of contrasting yield potential and their sensitivity to photoperiod and soil N. Field Crops Research, 256, 107908. https://doi.org/10.1016/j.fcr.2020.107908
Hashemzehi, M., Moradgholi, A., & Ghasemi, A. (2014). Evaluation of responses of mung bean (Vigna radiata) genotypes to drought stress using different stress tolerance indices. Journal of Crop Breeding, 5(12), 112-122. (In Persian with English Abstract)
Heidari, H., Alizadeh, Y., & Fazeli, A. (2019). Effects of seed priming and foliar application of salicylic acid on some of physiological characteristic and yield on mung bean (Vigna radiata L.) under drought stress condition. Journal of Plant Production Research, 26(2), 127-141. (In Persian with English Abstract). https://doi.org/10.22069/jopp.2019.14863.2327.
Jalalvand, A., (2016). The effect of Cycocel and salicylic acid on some biochemical and physiological traits of Badrashboye medicinal plant under drought stress conditions. Ph.D. Thesis, Faculty of Agriculture, Zanjan University, Iran. (In Persian with English Abstract)
Kalantarahmadi, S., & Shoushi Dezfouli, A.A. (2021). Effects of drought stress and foliar application of ascorbic acid, salicylic acid, methanol and post-harvest storage on seed yield and seed vigor of Hyola401 rapeseed Cultivar. Journal of Crop Ecophysiology, 15(57), 109-130. https://doi.org/10.30495/jcep.2021.681009. (In Persian with English Abstract)
Khalili, M., Naghavi, M.R., & Talebzade, S.J. (2020). Evaluation of changes in morphological, physiological and biochemical traits of some canola cultivars under salinity stress. Iranian Journal of Field Crop Science, 51(2), 15-28. (In Persian). https://doi.org/10.22059/ijfcs.2019.250429.654438.
Khalilzadeh, R., Seyed Sharifi R., & Jalilian J. (2017). Effects of cycocle and seed inoculation with plant growth promoting rhizobacteria on yield, chlorophyll fluorescence parameters and some physiological properties of wheat under water limitation condition. Plant Process and Function; 6(21), 247-266. (In Persian).
Khosroshahi, M. (2013). Estimating water requirement of Prosopis juliflora at different habitates of Persian Gulf-Aman Sea region of Iran. Iranian Journal of Forest and Poplar Research, 21(2), 300-315. (In Persian with English Abstract). https://doi.org/10.22092/ijfpr.2013.3859
Mojadam, M., Sakinezhad, T., Shokoohfar, A., & Esmaili Pour, N. (2016). Effect of plant density and Cycocel on quantitative characteristics and protein barley cultivar south. Crop Physiology Journal, 29(8), 121-135. (In Persian)
Nakhzari Moghaddam, A., Ghelichi Yanghagh, H., Biabani, A., & Taliey, F. (2020). The effect of nitrogen and irrigation interval on quantity traits and protein of mung bean (Vigna radiata L.) genotypes under non fixation of nitrogen. Journal of Crops Improvement, 22(2), 205-215. https://doi.org/10.22059/jci.2019.281865.2221. (In Persian)
Pakar, N., Pirasteh-Anosheh, H., Emam, Y., & Pessarakli, M. (2016). Barley growth, yield, antioxidant enzymes, and ion accumulation affected by PGRs under salinity stress conditions. Journal of Plant Nutrition, 39(10), 1372-1379. https://doi.org/10.1080/01904167.2016.1143498
Pirasteh Anosheh, H., & Emam, Y. (2012). Yield and yield component responses of bread and durum wheat to PGRs under drought stress conditions in field and greenhouse. Environmental Stresses in Crop Sciences, 5(1), 1-17. (In Persian). https://doi.org/10.22077/escs.2012.110
Pirasteh Anosheh, H., & Emam, Y. (2019). The role of plant growth regulators in enhancing crop yield under saline conditions: From theory to practice. Iranian Journal of Crop Sciences, 21(3), 188-209. (In Persian with English Abstract). https://doi.org/10.29252/abj.21.3.188
PirastehAnosheh, H., & Emam, Y. (2022). Induced salinity tolerance and altered ion storage factor in Hordeum vulgare plants upon salicylic-acid priming. Iran Agricultural Research, 36(1), 41-48. (In Persian with English Abstract). https://doi.org/10.22099/iar.2017.3878.
Pourmohammad, A., Shekari, F., & Soltaniband, V. (2014). Cycocel priming and foliar a, location affect yield components of rapeseed (Brassica napus L.). Cercetari Agronomice in Moldova, 47(1), 59-69.
Rajala, A. (2003). Plant growth regulators to manipulate cereal growth in northern growing conditions. First Edition. University of Helsinki, Finland. pp. 98-101.
Roshdi, M., Yarnia, M., & Hashemzadeh, F. (2011). Evaluation of grain yield and some agronomic traits of two corn (Zea mays) varieties as a second crop under drought stress and application of Cycocel. Journal of Crop Ecophysiology, 5(17(1)), 65-78. (In Persian with English Abstract)
Sadeghi, M., & Miri, H. (2015). Evaluation of different levels of chlormequat chloride (CCC) and plant density on lodging control in bread wheat. Journal of Plant Ecophysiology, 6(19), 30-44. (In Persian)
Sadeghipour, O. (2015). Study the physiological responses of mung bean (Vigna radiata L.) as affected by irrigation with magnetized water under drought stress. Journal of Plant Ecophysiology, 7(22), 71-85. (In Persian with English Abstract)
Safari, D., & Azadikhah, M. (2021). The effect of Cycocel spraying on yield and yield components of spring chickpea (Cicer arietinum L.) under rainfed conditions. Iranian Journal Pulses Research, 12(1), 58-67. (In Persian with English Abstract). https://doi.org/10.22067/ijpr.v12i1.80708
Sehrawat, N., Jaiwal, P.K., Yadav, M., Bhat, K.V., & Sairam, R.K. (2013). Salinity stress restraining mungbean (Vigna radiata (L.) Wilczek) production: Gateway for genetic improvement. International Journal of Agriculture and Crop Sciences, 6, 505.
Sharifi, R.S., Khalilzadeh, R., & Vatandoost, M. (2017). Study of nitrogen fertilizer and Cycocel on Fv/Fm and dry matter mobilization to grain yield of wheat (Triticum aestivum L.). Cercetări Agronomice în Moldova, 1, 5-17.
Shokhmgar, M., Seghatoleslami, M., Mousavi, S.G., & Baradaran, R. (2021). To Study the response of grain yield and some agronomical traits of foxtail millet (Setaria italica L.) to foliar application of growth regulators under drought stress condition. Environmental Stresses in Crop Sciences, 14(4), 977-989. https://doi.org/10.22077/escs.2020.3136.1803. (In Persian)
Valimohammadi, F., (2014). The effect of foliar spraying of anti-stress and anti-transpiration agents on soybean growth and yield in different irrigation regimes. Ph.D. Thesis, Faculty of Agriculture, Urmia University, Iran. (In Persian with English Abstract)
Yavas, I., & Unay, A. (2016). Effects of zinc and salicylic acid on wheat under drought stress. Journal of Animal and Plant Sciences, 26, 1012-101.
Zabet, M., Hosseinzadeh, A., Ahmadi, A., & Khiyalparast, F., (2012). Studying the effects of drought stress on various traits and determining the best index of drought resistance in mung bean. Agricultural Sciences of Iran, 34(4), 898-889. (In Persian with English Abstract)
CAPTCHA Image