کاهش اثرات کم‌آبیاری بر رشد و عملکرد نخود (Cicer arietinum L.) توسط اسپرمیدین

نوع مقاله : مقالات پژوهشی

نویسندگان

صنعتی شاهرود

چکیده

به‌منظور بررسی تأثیر اسپرمیدین بر برخی صفات کمی و کیفی نخود در شرایط فاریاب، مطالعه‌ای در دانشکده کشاورزی دانشگاه صنعتی شاهرود در سال1395 انجام شد. آزمایش به‌صورت کرت‌های خُردشده در قالب طرح بلوک­ کامل تصادفی در سه تکرار اجرا گردید. عوامل آزمایش شامل رژیم ­آبیاری در سه سطح (دور آبیاری هفت‌روز (شاهد)، دور آبیاری 10‌روز و دور آبیاری 13روز) و محلول‌پاشی برگی اسپرمیدین در سه سطح (شاهد، محلول­پاشی با غلظت 3/0‌میلی‌مولار و محلول­پاشی با غلظت 6/0میلی­مولار) ­بود. نتایج نشان داد که درشرایط استفاده از غلظت 3/0میلی­مولار اسپرمیدین، فعالیت آنزیم کاتالاز 48درصد نسبت به شاهد کاهش یافت. در غلظت 6/0‌میلی­مولار اسپرمیدین، تغییر معنی­داری در فعالیت این آنزیم وجود نداشت. در دور آبیاری 13‌روز، غلظت­های 3/0 و 6/0‌میلی­مولار اسپرمیدین باعث شد که فعالیت آنزیم گوایکول پراکسیداز به ترتیب 38درصد و 67درصد کاهش یابد و در مقابل، محتوای نسبی کلروفیل برگ به ترتیب 12درصد و 24درصد افزایش نشان دهد. این افزایش در صفات تعداد غلاف در بوته (به ترتیب 23درصد و 31درصد)، زیست‌توده (23درصد و 44درصد)، عملکرد دانه (20درصد و 34درصد) و پروتئین دانه (3درصد و 6درصد) نیز مشاهده شد. اسپرمیدین 6/0‌میلی­مولار به‌عنوان بهترین سطح تیمار برای شرایط وجود و عدم­وجود تنش خشکی شناخته شد.
 

کلیدواژه‌ها


1. Alcazar, R.F., Marco, J.C., Cuevas, M., Patron, A., Ferrando, P., and Carrasco, A.F. 2006. Involvement of polyamines in plant response to abiotic stress. Biotechnological Letters 28: 1867-1876.
2. Anbessa, Y., and Bejiga, G. 2002. Evaluation of ethiopian chickpea landraces for tolerance to drought. Genetic Resources and Crop Evolution 49: 557-564.
3. Ashori, A., Gholipoor, M., and Heydari, M. 2019. Effect of spermine and spermidine sparaying on growth and some physiological traits of chickpea. Iranian Journal of Pulses Research 10(2) (In Press). (In Persian with English Summary).
4. Bradford, M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing protein-dye binding. Analytical Biochemistry 72: 248-254.
5. Cavalcanti, F.R., Oliveira, J.T.A., Martins-Miranda, A.S., Viegas, R.A., and Silveira, J.A.G. 2004. Superoxide dismutase, catalase and peroxidase activities do not confer protection against oxidative damage in salt-stressed cowpea leaves. New Phytologist 163: 563-571.
6. Do, P.T., Degenkolbe, T., Erban, A., Heyer, A.G., Kopka, J., Köhl, K.I., Hincha, D.K., and Zuther, E. 2016. Dissecting rice polyamine metabolism under controlled long-term drought stress. Plus One 8: 1-14.
7. Gao, X., Yuan, H.M., Hu, Y.Q., Li, J., and Lu, Y.T. 2014. Mutation of Arabidopsis CATALASE2 results in hyponastic leaves by changes of auxin levels. Plant and Cell Environment 37: 175-88.
8. Gilroy, S., Bialasek, M., Suzuki, N., Gorecka, M., Devireddy, A.R., Karpinski, S., and Mittler, R. 2016. ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiology 171: 1606-1615.
9. Goldani, M., and Rezvani, P. 2007. The effects of different irrigation regimes and planting dates on phenology and growth indices of three chickpea (Cicer arietinum L.) cultivars in Mashhad. Journal of Agricultural Sciences and Natural Resources 14: 229-242. (In Persian with English Summary).
10. Gupta, K., Dey, A., and Gupta, B. 2013. Plant polyamines in abiotic stress responses. Acta Physiologiae Plantarum 35: 2015-2036.
11. Kafi, M., Ganjeali, A., and Abbasi, F. 2006. Study of changes in leaf abscisic acid (ABA) and stomatal resistance in drought resistant and sensitive genotypes of chickpea (Cicer arietinum L.). Science Journal of Tehran University 33(4): 26-19 (In Persian with English Summary).
12. Kakkar, R.K., and Sawhney, V.K. 2002. Polyamine research in plants: a changing perspective. Physiologia Plantarum 116: 281-292.
13. Kashiwagi, J., Krishnamurthy, L., Upadhyaya, H.D., Krishna, H., Chandra, S., Vadez, V., and Serraj, R. 2005. Genetic variability of drought-avoidance root traits in mini-core germplasm collection of chickpea. Euphytica 146: 213-222.
14. Liu, H.P., Dong, B.H., Zhang, Y.Y., Liu, Z.P., and Liu, Y.L. 2004. Relationship between osmotic stress and the levels of free conjugated and bound polyamines in leaves of wheat seedlings. Plant Science 166: 1261-1267.
15. Liu, C., Liu, Y., Guo, K., Fan, D., Li, G., Zheng, Y., Yu, L., and Yang, R. 2011. Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in sixwoody plant species in Karst habitats of southwestern China. Environmental and Experimental Botany 71: 174-183.
16. Minocha, R., Majumdar, R., and Minocha, S.C. 2014. Polyamines and abiotic stress in plants: a complex relationship. Frontiers in Plant Science 5: 175-184.
17. Noctor, G., Veljovic-Jovanovic, S.D., Driscoll, S., Novitskaya, L., and Foyer, C.H. 2002. Drought and oxidative load in wheat leaves. A predominant role for photorespiration? Annals of Botany 89: 841-850.
18. Noctor, G., Reichheld, J.P., and Foyer, C.H. 2017. ROS-related redox regulation and signaling in plants. Seminars in Cell and Developmental Biology 25: 112-119.
19. Padhi, E.M.T., and Ramdath, D.D. 2017. A review of the relationship between pulse consumption and reduction of cardiovascular disease risk factors. Journal of Functional Foods 38: 635-643.
20. Pal, M., Szalai, G., and Janda, T. 2015. Speculation: polyamines are important in abiotic stress signaling. Plant Science 237: 16-23.
21. Queval, G., Jaillard, D., Zechmann, B., and Noctor, G. 2011. Increased intracellular H2O2 availability preferentially drives glutathione accumulation in vacuoles and chloroplasts. Plant Cell Environment 34: 21-32.
22. Saleethong, P., Sanitchon, J., Kong-Ngern, K., and Theerakulpisut, P. 2011. Pretreatment with spermidine reverses inhibitory effects of salt stress in two rice (Oryza sativa L.) cultivars differing in salinity tolerance. Asian Journal of Plant Science 24: 23-32.
23. Sen, G., Eryilmaz, I.E., and Ozakca, D. 2014. The effect of aluminum stress and exogenous spermidine on chlorophyll degradation, glutathione reductase activity and the photosystem II D1 protein gene (psbA) transcript level in lichen (Xanthoria parietina L.). Phytochemistry 98: 54-59.
24. Sepehri, A., and Golparvar, A.R. 2011. The effect of drought stress on water relations, chlorophyll content and leaf area in canola cultivars (Brassica napus L.). Electronic Journal of Biology 7: 49-53.
25. Shu, S., Yuan, L.Y., Guo, S.R., Sun, J., and Yuan, Y.H. 2013. Effects of exogenous spermine on chlorophyll fluorescence antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress. Plant Physiology and Biochemistry 63: 209-216.
26. Singh, J., Singh, K.P., Mehta, O.P., and Malik, R.S. 1991. Seasonal consumptive use, moisture extraction pattern and water use efficiency of Kabuli gram (Cicer arietinum L.) cultivars under different levels of irrigation. Agricultural Digest 11: 142-144.
27. Terzi, R., and Kadioglu, A. 2006. Drought stress tolerance and the antioxidant enzyme system. Acta Biologica Cracoviensia Series Botanica 48: 89-96.
28. Wallace, H.M., Fraser, A.V., and Hughes, A. 2003. A perspective of polyamine metabolism. Biochemistry Journal 376: 1-14.
29. Weits, D.A., Giuntoli, B., Kosmacz, M., Parlanti, S., Hubberton, H.M., Riegler, H., Hoefgren, R., Perata, P., van Dongen, J.T., and Licausi, F. 2014. Plant cysteine oxidases control the oxygen-dependent branch of the N-end rule pathway. Nature Communication 5: 3425-3432.
30. Zepeda-Jazo, I., Velarde-Buendia, A.M., Enriquez-Figueroa, R., Jayakumar, B., Shabala, S., and Muñiz, J. 2016. Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes. Plant Physiology 157: 2167-2180
CAPTCHA Image