بررسی بیوانفورماتیکی و جداسازی پروموتر بتافازئولین از لوبیا (Phaseolus vulgaris)

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه زنجان

2 دانشگاه تربیت مدرس

3 انستیتو تحقیقات کشاورزی هند- دهلی نو

چکیده

جهت اجتناب از مضرات پروموترهای عمومی، شناسایی و جداسازی پروموترهای قوی و اختصاصی بافت امری بسیار مهم و ضروری در مهندسی ژنتیک است. یکی از پروموترهای اختصاصی و قوی بذری، پروموتر بتافازئولین لوبیا می‌باشد که بیان حدود ۵۰‌درصد پروتئین‌های بذر لوبیا را کنترل می‌کند. استفاده از این پروموتر برای بهینه‌کردن تولید پروتئین‌های بذری در لوبیا و گیاهان دیگر و همچنین تولید پروتئین‌های نوترکیب مفید خواهد بود. آنالیز بیوانفورماتیکی پروموترها برای پیشگویی در مورد قدرت و ضعف آن‌ها، جداسازی صحیح و همچنین سنتز پروموترهای مصنوعی کمک خواهد کرد. ابتدا به‌وسیله نرم‌افزارهای آنالیز پروموتر توالی‌های پروموتری بتافازئولین گیاه لوبیا مورد تجزیه و تحلیل قرار گرفت. نتایج حاصل نشان داد که بیش از ۲۰‌فاکتور سیس از جمله مهم‌ترین آن‌ها G-box، E-box، فاکتور RY،ACGTSEED2، جعبه لگومین، جعبه اندوسپرم و...در توالی پروموتر بتافازئولین وجود دارد که در بیان بالا و اختصاصیت آن نقش دارند. با توجه به نتایج آنالیز بیوانفورماتیکی پرایمرهای اختصاصی این پروموتر طراحی شد و با استفاده از آن‌ها توالی پروموتر موردنظر از DNA ژنومی لوبیا تکثیر و با توجه به اندازه قطعه تکثیرشده، صحت آن مورد تأیید قرار گرفت. در مرحله بعدی توالی پروموتر موردنظر در ناقل pTZ57R/T کلون شد و با استفاده از واکنش‌های PCR و هضم آنزیمی مورد تأیید قرار گرفت. از آنجایی‌که هدف از این تحقیق جداسازی پروموتر اختصاصی بذر بتافازئولین از لوبیا و استفاده از آن در تهیة سازه‌های ژنی می‌باشد، لذا قطعة موردنظر در ناقل بیانی گیاهی pBI121 ساب‌کلون شد و نتایج آن با هضم آنزیمی و PCR تأیید شد.

کلیدواژه‌ها


1. Baumlein, H., Nagy, I., Villarroel, R., Inz, D., and Wobus, U.1992. Cis- analysis of a seed protein gene promoter: the conservative RY repeat CATGCATG within the legumin box is essential fortissue-specific expression of a legumin gene. Plant Journal 2: 233-239.
2. Bustos, M.M., Begum, D., Kalkan, F.A., Battraw, M.J., and Hall, T.C. 1991. Positive and negative cis-acting DNA domains are required for spatial and temporal regulation of gene expression by a seed storage protein promoter. The EMBO Journal 10(6): 1469-1479.‏
3. Cahoon, E.B., and Shanklin, J. 2000. Substrate-dependent mutant complementation to select fatty acid desaturase variants for metabolic engineering of plant seed oils. Proceedings of the National Academy of Sciences 97(22): 12350-12355.
4. Chandrasekharan, M.B., Bishop, K.J., and Hall, T.C. 2003. Module‐specific regulation of the β‐phaseolin promoter during embryogenesis. The Plant Journal 33(5): 853-866.‏
5. Chern, M.S., Eiben, H.G., and Bustos, M.M. 1996. The developmentally regulated bZIP factor ROM1 modulates transcription from lectin and storage protein genes in bean embryos. The Plant Journal 10(1): 135-148.
6. De Jaeger, G., Scheffer, S., Jacobs, A., Zambre, M., Zobell, O., Goossens, A., and Angenon, G. 2002. Boosting heterologous protein production in transgenic dicotyledonous seeds using Phaseolus vulgaris regulatory sequences. Nature Biotechnology 20(12): 1265-1268.
7. Ezcurra, I., Ellerström, M., Wycliffe, P., Stålberg, K., and Rask, L. 1999. Interaction between composite elements in the napA promoter: both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression. Plant Molecular Biology 40(4): 699-709.‏
8. Fehlberg, V., Vieweg, M.F., Dohmann, E.M., Hohnjec, N., Pühler, A., Perlick, A.M., and Küster, H. 2005. The promoter of the leghaemoglobin gene VfLb29: functional analysis and identification of modules necessary for its activation in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots. Journal of Experimental Botany 56(413): 799-806.
9. Goto, F., Yoshihara, T., Shigemoto, N., Toki, S., and Takaiwa, F. 1999. Iron fortification of rice seed by the soybean ferritin gene. Nature Biotechnology 17(3): 282-286.
10. Hall, T.C., Chandrasekharan, M.B., and Li, G. 1999. Phaseolin: its past, properties, regulation and future. In: Seed Proteins Springer Netherlands P. 209-240.
11. Kawagoe, Y., Campell, B.R., and Murai, N. 1994. Synergism between CACGTG (G-box) and CACCTG c/s-elements is required for activation of the bean seed storage protein ß-phaseolin gene. The Plant Journal 5(6): 885-890.‏
12. Keeler, S.J., Maloney, C.L., Webber, P.Y., Patterson, C., Hirata, L.T., Falco, S.C., and Rice, J.A. 1997. Expression of de novo high-lysine α-helical coiled-coil proteins may significantly increase the accumulated levels of lysine in mature seeds of transgenic tobacco plants. Plant Molecular Biology 34(1): 15-29.
13. Li, G., Chandler, S.P., Wolffe, A.P., and Hall, T.C. 1998. Architectural specificity in chromatin structure at the TATA box in vivo: nucleosome displacement upon β-phaseolin gene activation. Proceedings of the National Academy of Sciences 95(8): 4772-4777.‏
14. Ma, Y., and Bliss, F.A. 1978. Seed proteins of common bean. Crop Science 18(3): 431-437.
15. Muren, E., and Rask, L. 1995. Processing in vitro of pronapin, the 2S storage-protein precursor of Brassica nupus produced in a baculovirus expression system. European Journal of Biochemistry 227: 316-321.
16. Shintani, D., and DellaPenna, D. 1998. Elevating the vitamin E content of plants through metabolic engineering. Science 282(5396): 2098-2100.
17. Thomas, T.L. 1993. Gene expression during plant embryogenesis and germination: an overview. The Plant Cell 5(10): 1401-1410.‏
18. Van der Geest, A.H., and Hall, T.C. 1997. A 68 bp element of the β-phaseolin promoter functions as a seed-specific enhancer. Plant Molecular Biology 32(4): 579-588.
19. van der Geest, A.H., and Hall, T.C. 1997. The β-phaseolin 5′ matrix attachment region acts as an enhancer facilitator. Plant Molecular Biology 33(3): 553-557.‏
20. Van Droogenbroeck, B., Cao, J., Stadlmann, J., Altmann, F., Colanesi, S., Hillmer, S., and De Jaeger, G. 2007. Aberrant localization and underglycosylation of highly accumulating single-chain Fv-Fc antibodies in transgenic Arabidopsis seeds. Proceedings of the National Academy of Sciences 104(4): 1430-1435.
21. Van Ooyen, A.J.J., Rietveld, K., Quax, W.J., Pen, J., Hoekema, A., Sijmons, P.C., and Verwoerd, T.C. 2006. Production of Enzymes in Seeds and their use.U.S. Patent No. 7,033,627. Washington, DC: U.S. Patent and Trademark Office.
22. Ye, X., Al-Babili, S., Klöti, A., Zhang, J., Lucca, P., Beyer, P., and Potrykus, I. 2000. Engineering the provitamin a (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287(5451): 303-305
CAPTCHA Image