روند تغییرات صفات مورفوفیزیولوژیک ژنوتیپ‌های نخود (Cicer arietinum L.) در پاسخ به تنش شوری ناشی از کلریدسدیم

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه فردوسی مشهد

چکیده

شوری یکی از مهم‌ترین تنش‌های غیرزیستی درحال‌گسترش بوده که علاوه بر اثرات سمی و تغذیه‌ای، توانایی گیاه برای جذب آب را کاهش می‌دهد. در مواجهه با تنش شوری، مجموعه‌ای از واکنش‌های مورفوفیزیولوژیک در گیاهان ایجاد می‌شود. عملکرد نخود به‌دلیل حساسیت بالا به این تنش و به‌دنبال برخی پاسخ‌های قابل‌توجه در خصوصیات فیزیولوژیک و مورفولوژیک، به‌شدت کاهش می‌یابد. در این تحقیق، پیامدهای غلظت‌های مختلف تنش شوری شامل صفر، 8 و
dS.m-1 12 بر ویژگی‌های مورفوفیزیولوژیک ژنوتیپ‌های حساس و متحمل نخود در مراحل اولیه رشدونمو گیاه به‌صورت آزمایش فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار و چهار نمونه‌برداری با فاصله زمانی یک هفته مورد بررسی قرار گرفت. بر اساس داده‌های حاصل، با افزایش غلظت کلریدسدیم و گذشت زمان (هفته چهارم)، ژنوتیپ‌های MCC760 و MCC806 به‌ترتیب از کمترین و بیشترین آسیب بر اساس شاخص‌های وزن‌خشک ریشه به وزن‌خشک اندام هوایی
(8/0 و 2برابر کاهش) و وزن‌خشک ریشه (7/1 و 4برابر کاهش) برخوردار بودند. در شدت‌ بالای تنش (dS.m-1 12)، ژنوتیپ‌ MCC760 نه‌تنها مقدار رنگدانه‌های فتوسنتزی (شامل کلروفیل‌های a، b و کارتنوئید‌ها) بیشتری داشت، بلکه شدت کاهش رنگدانه‌های این ژنوتیپ، کمتر و در مقابل، ضریب پایداری کلروفیل آن (75درصد) به‌صورت معنی‌داری بیشتر از سایر ژنوتیپ‌ها بود، به‌طوری‌که تفاوت آن با ژنوتیپ MCC806 بیش از 30درصد بود. درصد رطوبت نسبی در همه ژنوتیپ‌ها کاهش یافت و در هفته سوم، این دو ژنوتیپ به‌ترتیب با کاهش 8/1 و 4/3‌برابر نسبت به شاهد، کمترین و بیشترین تغییرات را نشان دادند. بنابراین در بین ژنوتیپ‌های مورد مطالعه ژنوتیپ MCC760 به‌عنوان متحمل‌ترین ژنوتیپ به تنش شوری معرفی شد و زمان مناسب جهت ارزیابی تحمل به این صفت بر مبنای خصوصیات مورفولوژیک، هفته چهارم و بر مبنای صفات فیزیولوژیک، هفته سوم تعیین شد.

کلیدواژه‌ها


1. Ahmed, S., Nawata, E., Hosokawa, M., Domae, Y., and Sakuratani, T. 2002. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Science 163: 117-123.
2. Ashraf, M., and Harris, P. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Science 166: 3-16.
3. Bayoumi, T., Eid, M.H., and Metwali, E. 2010. Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes. African Journal of Biotechnology 7: 2341-2352.
4. Beck, E.H., Fettig, S., Knake, C., Hartig, K., and Bhattarai, T. 2007. Specific and unspecific responses of plants to cold and drought stress. Journal of Biosciences 32: 501-510.
5. Bibi, N., Hameed, A., Ali, H., Iqbal, N., Haq, M., Atta, B., Shah, T., and Alam, S. 2009. Water stress induced variations in protein profiles of germinating cotyledons from seedlings of chickpea genotypes. Pakistan Journal of Botany 41: 731-736.
6. Bray, E.A. 1997. Plant responses to water deficit. Trends in Plant Science 2: 48-54.
7. Chauhan, Y. 1987. Screening for tolerance to salinity and waterlogging: case studies with pigeonpea and chickpea. In: Consultants' Workshop: Adaptation of Chickpea and Pigeonpea to Abiotic Stresses, 19-21 Dec 1984, ICRISAT, India.
8. de Silva, M., Purcell, L.C., and King, C.A. 1996. Soybean petiole ureide response to water deficits and decreased transpiration. Crop Science 36: 611-616.
9. Dhingra, H.R. 2007. Salinity mediated changes in yield and nutritive value of chickpea (Cicer arietinum L.) seeds. Indian Journal of Plant Physiology 12: 271-275.
10. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., and Basra, S. 2009. Plant drought stress: effects, mechanisms and management. Sustainable Agriculture 29(1): 153-188.
11. Figueiredo, M.V.B., Bezerra-Neto, E., and Burity, H.A. 2001. Water stress response on the enzymatic activity in cowpea nodules. Brazilian Journal of Microbiology 32: 195-200.
12. Galle, A., Csiszar, J., Tari, I., and Erdei, L. 2002. Changes in water and chlorophyll fluorescence parameters under osmotic stress in wheat cultivars. Acta Biologica Szegediensis 46: 85-86.
13. Ganjeali, A., and Kafi, M. 2007. Genotypic differences for allometric relationships between root and shoot characteristics in chickpea (Cicer arietinum L.). Pakistan Journal of Botany 39: 1523-1531.
14. Ganjeali, A., Porsa, H., and Bagheri, A. 2011. Assessment of Iranian chickpea (Cicer arietinum L.) germplasms for drought tolerance. Agricultural Water Management 98: 1477-1484.
15. Guerfel, M., Baccouri, O., Boujnah, D., Chaïbi, W., and Zarrouk, M. 2009. Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Scientia Horticulturae 119: 257-263.
16. Gunes, A., Cicek, N., Inal, A., Alpaslan, M., Eraslan, F., Guneri, E., and Guzelordu, T. 2006. Genotypic response of chickpea (Cicer arietinum L.) cultivars to drought stress implemented at pre-and post-anthesis stages and its relations with nutrient uptake and efficiency. Plant Soil and Environment 52: 368-376.
17. Kafi, M., Bagheri, A., Nabati, J., Zare Mehrjerdi, M., and Masomi, A. 2011. Effect of salinity on some physiological variables of 11 chickpea genotypes under hydroponic conditions. Journal of Science and Technology of Greenhouse Culture-Isfahan University of Technology 1: 55-70.
18. Kalefetoglu Macar, T., Turan, O., and Ekmekci, Y. 2009. Effect of water deficit induced by PEG and NaCl on chickpea (Cicer arietinum L.) cultivar and lines at early seedling stage. Gazi University Journal of Science 22: 5-14.
19. Kumaga, F., Adiku, S., and Ofori, K. 2003. Effect of post-flowering water stress on dry matter and yield of three tropical grain legumes. International Journal of Agriculture and Biology 4: 405-407.
20. Lage-Pinto, F., Oliveira, J.G., Da Cunha, M., Souza, C.M.M., Rezende, C.E., Azevedo, R.A., and Vitoria, A.P. 2008. Chlorophyll a fluorescence and ultrastructural changes in chloroplast of water hyacinth as indicators of environmental stress. Environmental and Experimental Botany 64: 307-313.
21. Lichtenthaler, H.K., and Buschmann, C. 2001. Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy. Current Protocols in Food Analytical Chemistry. pp. F4.3.1-F4.3.8). New York John Wiley and Sons.
22. Maliro, M.F.A., McNeil, D., Kollmorgen, J., Pittock, C., and Redden, R. 2004. Screening chickpea (Cicer arietinum L.) and wild relatives germplasm from diverse country sources for salt tolerance. The 4th International Crop, Science Congress, Brisbane, Queensland, Australia.
23. Mehrjerdi, M.Z., Nabati, J., Masomi, A., Bagheri, A., and Kafi, M. 2011. Evaluation of tolerance to salinity based on root and shoot growth of 11 drought tolerant and sensitive chickpea genotypes at hydroponics conditions. Iranian Journal of Pulses Research 2: 83-96.
24. Mensah, J., Obadoni, B., Eruotor, P., and Onome-Irieguna, F. 2009. Simulated flooding and drought effects on germination, growth, and yield parameters of sesame (Sesamum indicum L.). African Journal of Biotechnology 5: 1249-1253.
25. Millan, T., Clarke, H.J., Siddique, K.H.M., Buhariwalla, H.K., Gaur, P.M., Kumar, J., Gil, J., Kahl, G., and Winter, P. 2006. Chickpea molecular breeding: New tools and concepts. Euphytica 147: 81-103.
26. Moussa, H.R., and Abdel-Aziz, S.M. 2008. Comparative response of drought tolerant and drought sensitive maize genotypes to water stress. Australian Journal of Crop Science 1: 31-36.
27. Mudgal, V., Madaan, N., Mudgal, A., and Mishra, S. 2009. Changes in growth and metabolic profile of chickpea under salt stress. Journal of Applied Biosciences 23: 1436-1446.
28. Munns, R., and Tester, M. 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol 59: 651-681.
29. Okçu, G., Kaya, M.D., and Atak, M. 2005. Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.). Turkish Journal of Agriculture and Forestry 29: 237-242.
30. Prochazkova, D., Sairam, R., Srivastava, G., and Singh, D. 2001. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Science 161: 765-771.
31. Sairam, R., Srivastava, G., Agarwal, S., and Meena, R. 2005. Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biologia Plantarum 49: 85-91.
32. Saxena, N.P., Krishnamurthy, L., and Johansen, C. 1993. Registration of a drought-resistant chickpea germplasm. Crop Science 33: 1424-1424.
33. Simkin, A.J., Moreau, H., Kuntz, M., Pagny, G., Lin, C., Tanksley, S., and McCarthy, J. 2008. An investigation of carotenoid biosynthesis in Coffea canephora and Coffea arabica. Journal of Plant Physiology 165: 1087-1106.
34. Singh, K. 1987. Chickpea Breeding, In: M.C. Saxena and K.B Singh (Eds). The Chickpea. CAB International, Wallingford, UK. p. 127-162.
35. Singh, K. 1993. Chickpea (Cicer arietinum L.). Field Crops Research 53: 161-170.
36. Soussi, M., Lluch, C., Ocana, A., and Norero, A. 1999. Comparative study of nitrogen fixation and carbon metabolism in two chickpea (Cicer arietinum L.) cultivars under salt stress. Journal of Experimental Botany 50: 1701-1708.
37. Szabolcs, I. 1989. Salt-affected Soils. CRC Press (Boca Raton, Fla.). p. 274.
38. Tawfik, K. 2008. Effect of water stress in addition to potassiomag application on mungbean. Australian Journal of Basic and Applied Sciences 2: 42-52.
39. Terzi, R., and Kadioglu, A. 2006. Drought stress tolerance and the antioxidant enzyme system. Acta Biologica Cracoviensia Series Botanica 48: 89-96.
40. Toker, C., Lluch, C., Tejera, N.A., Serraj, R., and Siddique, K.H.M. 2007. Abiotic stresses. In: S.S. Yadav, R. Redden, W. Chen, and B. Sharma (Eds.). Chickpea Breeding and Management pp. 474-496. CABI, Wallingford, UK.
41. Vadez, V., Krishnamurthy, L., Serraj, R., Gaur, P., Upadhyaya, H., Hoisington, D., Varshney, R., Turner, N., and Siddique, K. 2007. Large variation in salinity tolerance in chickpea is explained by differences in sensitivity at the reproductive stage. Field Crops Research 104: 123-129.
42. Yokoi, S., Bressan, R.A., and Hasegawa, P.M. 2002. Salt stress tolerance of plants. JIRCAS Working Report 23: 25-33.
CAPTCHA Image