بررسی تنوع ژنوتیپ‌های عدس (Lens culinaris Medik.) تحت تنش یخ‌زدگی در شرایط کنترل‌شده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه بقولات، پژوهشکده علوم گیاهی، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه اگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

3 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد، ایران

چکیده

این مطالعه به‌منظور بررسی صفات مؤثر در تحمل به یخ‌زدگی ژنوتیپ‌‌های عدس، به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار در شرایط کنترل‌شده در دانشگاه فردوسی مشهد در سال 1398 اجرا شد. عوامل موردمطالعه شامل 18 ژنوتیپ عدس در چهار دمای یخ‌زدگی (صفر، 15-، 18- و 20- درجه سانتی‌گراد) بودند. نتایج نشان داد که کاهش دما به 18- و 20- درجه سانتی‌گراد سبب کاهش درصد بقاء در بیشتر ژنوتیپ‌ها شد. بیشترین درصد بقاء در دمای 18- درجه سانتی‌گراد در ژنوتیپ MLC11 مشاهده شد. هیچ‌کدام از ژنوتیپ‌های موردمطالعه قادر به تحمل دمای 20-درجه سانتی‌گراد نبودند. در دمای 15- درجه سانتی‌گراد ژنوتیپ‌های MLC13، MLC17، MLC70، MLC409 و MLC454 دارای بقای بالای 80 درصد بودند. تجزیه به عامل‌ها نشان داد که عامل اول 12/31 درصد از تغییرات را با کلروفیلa، کاروتنوئیدها، نسبت Cha/Chb، کل رنگ‌دانه‌های فتوسنتزی و مهار فعالیت رادیکال آزاد DPPH و عامل دوم 28/18 درصد از تغییرات را با کلروفیلb، پراکسیداز، ارتفاع بوته و زیست‌توده توجیه می‌کند. با توجه به این صفات ژنوتیپ‌های MLC8، MLC13، MLC17، MLC38، MLC84، MLC286 و MLC334 به‌عنوان ژنوتیپ‌های با تحمل بالا به تنش می‌باشند. تجزیه خوشه‌ای ژنوتیپ‌ها و مقایسه میانگین گروه‌ها نشان داد که تمامی صفات به‌جز کربوهیدرات‌های محلول، پرولین، محتوای نسبی آب برگ، کاتالاز و پتانسیل اسمزی در گروه‌ اول (MLC8، MLC11، MLC33، MLC47، MLC70، MLC84، MLC409، MLC454 و MLC472) نسبت به میانگین کل برتری داشتند. بنابراین از این ژنوتیپ‌ها به دلیل برتری از نظر بقاء می‌توان در مطالعات تکمیلی تحمل به یخ‌زدگی در شرایط مزرعه در مناطق سرد استفاده نمود.

کلیدواژه‌ها

موضوعات


  1. Abe, N., Murata, T., and Hirota, A. 1998. Novel 1,1-diphenyl-2-picryhy- drazyl- radical scavengers, bisorbicillin and demethyltrichodimerol, from a fungus. Bioscience Biotechnology Biochemistry 62 (4): 61-662.
  2. Ali, M.B., and McNear, D.H. 2014. Induced transcriptional profiling of phenylpropanoid pathway genes increased flavonoid and lignin content in Arabidopsis leaves in response to microbial products. BMC Plant Biology 14(1): 84.
  3. Asghar, M.J., Hameed, A., Rizwan, M., Shahid, M., and Atif, R.M. 2021. Lentil wild genetic resource: A potential source of genetic improvement for biotic and abiotic stress tolerance. In: Wild Germplasm for Genetic Improvement in Crop Plants. Academic Press. p. 321-341.
  4. Banerjee, A., and Roychoudhury, A. 2016. Plant responses to light stress: oxidative damages, photoprotection and role of phytohormones. In: G.J. Ahammed, J.Q. Yu, (Eds.). Plant Hormones Under Challenging Environmental Factors. Dordrecht, Netherlands: Springer. p. 181–213.
  5. Banerjee, A., and Roychoudhury, A. 2018. Abiotic stress, generation of reactive oxygen species, and their consequences: an overview. In: V.P. Singh, S. Singh, D.Tripathi, et al. (Eds.). Revisiting the Role of Reactive Oxygen Species (ROS) in Plants: ROS Boon or Bane for Plants?. USA: Wiley. p.23–50
  6. Banerjee, A., and Roychoudhury, A. 2019. Cold stress and photosynthesis. Photosynthesis, Productivity and Environmental Stress, USA: Wiley.
  7. Bates, L. S., Waldren, R. P., and Teare, I. D. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39 (1): 205-207.
  8. Choudhury, F. K., Rivero, R. M., Blumwald, E., and Mittler, R. 2017. Reactive oxygen species, abiotic stress and stress combination. Plant Journal 90 (5): 856–867.
  9. Dere, S., Gines, T., and Sivaci, R. 1998. Spectrophotometric determination of chlorophylla, b and total carotenoid contents of some algae species using different solvents. Turkish Journal of Botany 22 (1): 13-17.
  10. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., and Smith, F. 1951. A colorimetric method for the determination of sugars. Nature 168, 167.
  11. Esteban, R., Moran, J.F., Becerril, J.M., and Garcia-Plazaola, J.I. 2015. Versatility of carotenoids: an integrated view on diversity, evolution, functional roles and environmental interactions. Environmental and Experimental Botany 119: 63–75.
  12. Furtauer, L., Weiszmann, J., Weckwerth, W., and Nagele, T. 2019. Dynamics of plant metabolism during cold acclimation. International Journal of Molecular Science 20, 5411. 1-15.
  13. Grusak, M.A. and Coyne, C.J. 2009. Variation for seed minerals and protein concentrations in diverse germplasm of lentil. In North America Pulse Improvement Association, 20th Biennial Meeting October 2009. USA p. 11.
  14. Guo, X., Liu, D., and Chong, K. 2018. Cold signaling in plants: Insights into mechanisms and regulation. Journal of Integrative Plant Biology 60(9): 745-
  15. Gururani, M. A., Venkatesh, J., and Tran, L.S.P. 2015. Regulation of photosynthesis during abiotic stress-induced photoinhibition. Molecular Plant 8(9): 1304-
  16. Hajihashemi, S., Noedoost, F., Geuns, J.M., Djalovic, I., and Siddique, K.H. 2018. Effects of cold stress on photosynthetic traits, carbohydrates, morphology and anatomy in nine cultivars of Stevia rebaudiana. Frontiers in Plant Science 9: 1430.
  17. Heath, R.L., and Packer, L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125 (1): 189-198.
  18. Jia, K., Baz, L., and Al-Babili, S. 2017. From carotenoids to strigolactones. Journal of Experimental Botany 69 (9): 2189-
  19. Jovanovic, S.V., Kukavica, B., Vidovic, M., Morina, F., and Menckho, L. 2018. Class III peroxidases: Functions, localization and redox regulation of isoenzymes. In Antioxidants and Antioxidant Enzymes in Higher Plants; Gupta, D., Palma, J., Corpas, F., Eds.; Springer: Cham, Switzerland, p. 269-
  20. Khaledian, Y., Maali-Amiri, R., and Talei, A. 2015. Phenylpropanoid and antioxidant changes in chickpea plants during cold stress. Russian Journal of Plant Physiology 62 (6): 772-
  21. Kosova, K., Vitamvas, P., Urban, M.O., Prasil, I.T., and Renaut, J. 2018. Plant abiotic stress proteomics: The major factors determining alterations in cellular proteome. Frontiers in Plant Science 9, 122.
  22. Kuai, B., Chen, J., and Hortensteiner, S. 2018. The biochemistry and molecular biology of chlorophyll breakdown. Journal of Experimental Botany 69 (4): 751–767.
  23. Lei, Y., Shah, T., Yong, Ch., Yan, L., Xue-kun, Zh., and Xi-ling, Z. 2019. Physiological and molecular responses to cold stress in rapeseed (Brassica napus ). Journal of Integrative Agriculture 18 (12): 2742–2752.
  24. Lin, D., Kong, R., Chen, L., Wang, Y., Wu, L., Xu, J., Piao, Zh., Lee, G., and Dong, Y. 2020. Chloroplast development at low temperature requires the pseudouridine synthase gene TCD3 in rice. Scientific Reports 10: 8515. 1-12.
  25. Lin, D., Xiao, M., Zhao, J., Li, Z., Xing, B., and Li, X. 2016. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 21, 1374.
  26. Liu, W., Yu, K., He, T., Li, F., Zhang, D., and Liu, J. 2013. The low temperature induced physiological responses of Avena nuda, a cold-tolerant plant species. The Scientific World Journal 1-7.
  27. Liu, Y., Tikunov, Y., Schouten, R.E., Marcelis, L.F.M., Visser, R.G.F., and Bovy, A. 2018. Anthocyanin biosynthesis and degradation mechanisms in solanaceous vegetables: a review. Frontiers in Chemistry 6: 52.
  28. Liu, Z., Jia, Y., Ding, Y., Shi, Y., Li, Z., Guo, Y., Gong, Z., and Yang, S. 2017. Plasma membrane CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune CBF signaling during cold response. Molecular Cell 66 (1): 117–128.
  29. Murray, G.A., Eser, D., Gusta, L.V. and Eteve, G., 1988. Winterhardiness in pea, lentil, faba bean and chickpea. In World Crops: Cool Season Food Legumes p. 831-843. Springer, Dordrecht.
  30. Nabati, J., Nezami, A., Mirmiran, S.M., Hasanfard, A., Hojjat, S.S., and Bagheri, A. 2020b. Freezing tolerance in some lentil genotypes under controlled conditions. Seed and Plant Journal. 36 (2): 183-205. [In Persian with English Summary]
  31. Nabati, J., Nezami, A., Mirmiran, S.M., and Hojjat, S.S. 2020a. Evaluation of freezing tolerance of selected lentil (Lens culinaris ) genotypes in feild conditions. Iranian Journal of Field Crop Science 51 (3): 89-101. (In Persian with English Summary).
  32. Naing, A.H., Ai, T.N., Lim, K.B., Lee, I.J., and Kim, C.K. 2018. Overexpression of Rosea1 from snapdragon enhances anthocyanin accumulation and abiotic stress tolerance in transgenic tobacco. Frontiers in Plant Science 9: 1070.
  33. Paldi, K., Racz, I., Szigeti, Z., and Rudnoy, S. 2014. S_methylmethionine alleviates the cold stress by protection of the photosynthetic apparatus and stimulation of the phenylpropanoid pathway. Biologia Plantarum 58 (1): 189–194.
  34. Raja, V., Majeed, U., Kang, H., Andrabi, K.I., and John, R. 2017. Abiotic stress: Interplay between ROS, hormones and MAPKs. Environmental and Experimental Botany 137: 142–157.
  35. Rezaie, R., Abdollahi Mandoulakani, B., and Fattahi, M. 2020. Cold stress changes antioxidant defense system, phenylpropanoid contents and expression of genes involved in their biosynthesis in Ocimum basilicum Scientific Reports 10: 5290. 1-10.
  36. Sami, F., Yusuf, M., Faizan, M., Faraz, A., and Hayat, S. 2016. Role of sugars under abiotic stress. Plant Physiology and Biochemistry 109: 54-61.
  37. Singleton, V.L., and Rossi, J.A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture 16(3): 144-158.
  38. Sinha, R., Pal, A.K., and Singh, A.K. 2018. Physiological, biochemical and molecular responses of lentil (Lens culinaris) genotypes under drought stress. Indian Journal of Plant Physiology 23(4): 772-784.
  39. Sirivibulkovit, K., Nouanthavong, S., and Sameenoi, Y. 2018. Paper-based DPPH assay for antioxidant activity analysis. Analytical Sciences. 34: 795-800.
  40. Smart, R. E., and Bingham, G. E. 1974. Rapid estimates of relative water content. Plant physiology 53: 258-260.
  41. Soengas, P., M.Rodriges, V., Velasco, P., and Caetea, M. E. 2018. Effect of temperature stress on antioxidant defenses in brassica oleracea. ACS Omega 3: 5237-
  42. Sreenivasulu, N., Ramanjulu, S., Ramachandra-Kini, K., Prakash, H., Shekar-Shetty, H., Savithri, H., and Sudhakar, C. 1999. Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance. Plant Science 141(1): 1-9.
  43. Szepesi, A., and Szollosi, R. 2018. Mechanism of Proline Biosynthesis and Role of Proline Metabolism Enzymes Under Environmental Stress in Plants. Plant Metabolites and Regulation Under Environmental Stress, Academic Press p. 337-353.
  44. Tan, W.J., Yang, Y.C., Zhou, Y., Huang, L.P., Xu, L., Chen, Q.F., Yu, L.J., and Xiao, S. 2018. Diacylglycerol acyltransferase and Diacylglycerol kinase modulate triacylglycerol and phosphatidic acid production in the plant response to freezing stress. Plant Physiology 177 (3): 1303–1318.
  45. Valizadeh-Kamran, R., Toorchi, M., Mogadam, M., Mohammadi, H., and Pessarakli, M. 2017. Effects of freeze and cold stress on certain physiological and biochemical traits in sensitive and tolerant barley (Hordeum vulgare) genotypes. Journal of Plant Nutrition 41 (1): 102-111.
  46. Velikova, V., Yordanov, I., and Edreva, A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science 151(1): 59-66.
  47. Wanger, G.J. 1979. Content and vacuole/ extra vacuole distribution of neutral sugars, free amino acids, and anthocyanin's in protoplast. Plant Physiology 64: 88-93.
  48. Wisniewski, M., Glenn, D.M., and Fuller, M.P. 2002. Use of a hydrophobic particle film as a barrier to extrinsic ice nucleation in tomato plants. Journal of the American Society for Horticultural Science 127(3): 358-364.
  49. Zhang, B., Liu, C., Wang, Y., Yao, X., Wang, F., and Wu, J. 2015. Disruption of a CAROTENOID CLEAVAGE DIOXYGENASE 4 gene converts flower colour from white to yellow in Brassica New Phytologist 206 (4): 1513-1526.
  50. Zhao, Y., Han, Q., Ding, Ch., Huang, Y., Liao, J., Chen, T., Feng, Sh., Zhou, L., Zhang, Zh., Chen, Y., Yuan, Sh., and Yuan, M. 2020. Effect of low temperature on chlorophyll biosynthesis and chloroplast biogenesis of rice seedlings during greening. International Journal of Molecular Science 21: 1-22.
  51. Zhou, Q., Luo, D., Chai, X., Wu, Y., Wang, Y., Nan, Zh., Yang, Q., Liu, W., and Liu, Zh. 2018. Multiple regulatory networks are activated during cold stress in Medicago sativa International Journal of Molecular Science 19: 3169. 1-18.
CAPTCHA Image