واکنش‌های مورفولوژیک، فیزیولوژیک و بیوشیمیایی ژنوتیپ‌های متحمل و حساس به خشکی نخود (Cicer arietinum L.) در شرایط تنش خشکی در مزرعه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه فردوسی مشهد

2 دانشگاه پیام‌نور

چکیده

آزمایشی با هدف بررسی واکنش‌های مورفولوژیکی، فیزیولوژیکی و بیوشیمیایی ژنوتیپ‌های حساس و متحمل به خشکی نخود در شرایط تنش خشکی با 14ژنوتیپ، شامل دو رقم تجاری جم (361MCC) و کرج( 358MCC)، سه ژنوتیپ کابلی و سه ژنوتیپ دسی متحمل به خشکی به‌ترتیب شامل 392MCC، 537MCC، 696MCC و 873MCC، 870MCC،10MCC و همچنین سه ژنوتیپ کابلی و سه ژنوتیپ دسی حساس به خشکی به‌ترتیب شامل 759MCC، 588MCC، 774MC و 39MCC، 45MCC و 101MCC در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه فردوسی مشهد در شرایط دیم انجام شد. ژنوتیپ‌های فوق در مرحله گلدهی، از نظر صفات وزن‌خشک اندام هوایی، طول ساقه، مقدار نسبی آب برگ، شاخص پایداری غشاء، پتانسیل آب برگ، سطح برگ، کارآیی فتوسیستمΙΙ (Fv/Fm)، میزان پروتئین کل محلول برگی، پرولین و میزان فعالیت آنزیم کاتالاز، مورد مقایسه قرار گرفتند. نتایج نشان داد که همبستگی مثبت و معنی‌داری بین میزان پرولین و پروتئین کل محلول برگی وجود دارد. وزن‌خشک اندام هوایی و سطح برگ نیز همبستگی مثبت و معنی‌داری با میزان فعالیت آنزیم کاتالاز نشان دادند. فعالیت آنزیم کاتالاز، مقدار پرولین، پتانسیل آب برگ و کارآیی فتوسیستمΙΙ در ژنوتیپ‌های حساس به خشکی کمتر از سایر ژنوتیپ‌های مورد بررسی و به‌ویژه ژنوتیپ‌های متحمل به خشکی بود که به‌نظر می‌رسد می‌توان از این صفات به‌عنوان شاخص‌های مناسبی جهت ارزیابی میزان تحمل به خشکی ژنوتیپ‌های نخود استفاده کرد. برخلاف رقم تجاری جم (361MCC)، در رقم تجاری کرج (358MCC) مقادیر بالایی از فعالیت آنزیم کاتالاز، مقدار پرولین، پتانسیل آب برگ و کارآیی فتوسیستمΙΙ مشاهده شد که این نتایج نشان از تحمل بالاتر این رقم به تنش خشکی دارد.

کلیدواژه‌ها


1. Ahmed, S., Nawata, E., Hosokawa, M., Domae, Y., and Sakuratani, T. 2002. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to water logging. Plant Science 163: 117-123.
2. Amini, F., and Ehsanpour, A. 2005. Soluble proteins, proline, carbohydrates and Na+ /K+ changes in two tomato (Lycopersicon esculentum Mill.) cultivars under in vitro salt stress. American Journal of Biochemistry and Biotechnology 1: 212-216.
3. Ashraf, M., and Harris, P.J.C. 2004. Potential biochemical indicators of salinity tolerance in plants, Plant Sci. 166: 3-16.
4. Ashraf, M., and Iram, A. 2005. Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes differing in salt tolerance. Flora 200: 535-546.
5. Ashraf, M., Nawazish, S.H., and Athar, H. 2007. Are chlorophyll fluorescence and photosynthetic capacity potential physiological determinants of drought tolerance in maize (Zea mays L.)? Pak. J. Bot. 39: 1123-1131.
6. Auld, D.L., Bettis, B.L. Crock, J.E., and Kephart, K.D. 1988. Planting date and temperature effects on germination, emergence, and seed yield of chickpea (Cicer arietinum L.). Agron. J. 80: 909-914.
7. Bagheri, A., Nezami, A., Ganjeali, A., and Parsa, M. 1997. The Chickpea. Mashhad Jahad Daneshgahi Publishers (In Persian).
8. Barr, H.D., and Weatherley, P.E. 1962. A re-examination of the relative turgidity technique for estimating water deficit in leaves. Australian Journal of Biological Science 15: 413-428.
9. Bates, L.S., Waldern, R.P., and Teare, I.D. 1973. Rapid determination of free proline for water stress studies. Plant Soil Environ. 39: 205-207.
10. Bayoumi, T.Y., Eid, M., & Metwali, E.M. 2008. Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes. African Journal of Biotechnology 7: 2341-2352.
11. Beck, E., Fettig, S., Knake, C., Hartig, K., and Bhattarai, T. 2007. Specific and unspecific responses of plants to cold and drought stress. J. Biosci. 32: 501-510.
12. Bray, E.A. 1997. Plant responses to water deficit. Trends in Plant Science 2: 48-54.
13. Chandlee, J.M., and Scandalios, J.G. 1984. Analysis of variants affecting the catalase development program in Maize scutellum. Theor. Appl. Genet. 69: 71-77.
14. Dulai, S., Molnar, I., Pronay, J., Csernak, A., Tarnai, R., and Molnar-Lang, M. 2006. Effects of drought on photosynthetic parameters and heat stability of PSII in wheat and in Aegilops species originating from dry habitats. Acta Biologica Szegediensis 50: 11-17.
15. Eivazi, A., Talat, F., Saeed, A., and Ranji, H. 2007. Selection for osmoregulation gene to improve grain yield of wheat genotype under osmotic stress. Pakistan Journal of Biological Science 10: 3703-3707.
16. Farooq, M., Wahid, A., Kobayashi, N., Fujita D., and Basra, S.M.A. 2009. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development 29: 185-212.
17. Figueiredo, M., Bezerra, E., and Burity, H. 2001. Water stress response on the enzymatic activity in cowpea nodules. Braz. J. Microbiol. 32: 1-9.
18. Fu, J., and Huang, B. 2001. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ. Exp. Bot. 45: 05-114.
19. Galle, A., Csiszar, J., Tari, I., and Erdei, L. 2002. Changes in water and chlorophyll fluorescence parameters under osmotic stress in wheat cultivars. Acta Biologica Szegedieniensis 46: 85-86.
20. Ganjeali, A., and Kafi, M. 2007. Genotypic differences for allometric relationships between root and shot characteristics in chickpea (Cicer arietinum L.). Pak. J. Bot. 39: 1523-1531.
21. Ganjeali, A., Bagheri, A., and Porsa. H. 2009. Evaluation of chickpea (Cicer arietinum L.) germplasm for drought resistance. Iranian Journal of Field Crops Research 6: 295-303. (In Persian with English Summary).
22. Ganjeali, A., Porsa, H., and Bagheri, A. 2011. Assessment of Iranian chickpea (Cicer arietinum L.) germplasms for drought tolerance. Agricultural Water Management 98: 1477-1484.
23. Guerfel, M., Baccouri, O., Boujnah, D., Cha, W., and Zarrouk, M. 2008. Impacts of water stress on gas exchange, water elations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Scientia Horticulturae 1: 1-7.
24. Helal, R.M., and Samir, M.A. 2008. Comparative response of drought tolerant and drought sensitive maize genotypes to water stress. Aust. J. Crop Sci. 1: 31-36.
25. Izanloo, A., Condon, A.G., Langridge, P., Tester, M., and Schnurbusch, T. 2008. Different mechanisms of adaptation to cyclic water stress in two south Australian bread wheat cultivars. Journal of Experimental Botany 59: 3327-3346.
26. Kiani, S.P., Maury, P., Sarrafi, A., and Grieu, P. 2008. QTL analysis of chlorophyll fluorescence parameters in sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Plant Science 175: 565-573.
27. Koca, H., Bor, M., Ozdemir, F., and Turkan, I. 2007. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environmental and Experimental Botany 60: 344-351.
28. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randapp, R.J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 191: 265-275.
29. Maxwell, K., and Giles, N.J. 2000. Chlorophyll fluorescence, a practical guide. Journal of Experimental Botany 51: 659-668.
30. Najaphy, A., Niari Khamssi, N., Mostafaie, A., and Mirzaee, H. 2010. Effect of progressive water deficit stress on praline accumulation and protein profiles of leaves in chickpea. African Journal of Biotechnology 9: 7033-7036.
31. Niknam, V., Razavi, N., Ebrahimzadeh, H., and Sharifizadeh, B. 2006. Effect of NaCl on biomass proline and protein contents and antioxidant enzymes in seedling and calli of two Triginella species. Biologia Plantarum 50: 591-596.
32. Nunes, C., Ara ujo, S., da Silva, J.M., Salema Fevereiro, M., and da Silva, A. 2008. Physiological responses of the legume model Medicago truncatula cv. Jem along to water deficit. Environmental and Experimental Botany 63: 289-296.
33. Parameshwarappa, S.G., and Salimath, P.M. 2008. Field screening of chickpea genotypes for drought resistance. Karnataka Journal of Agriculture Science 21: 113-114.
34. Premachandra, G.S., Saneoka, H., and Ogata, S. 1990. Cell membrane stability an indicator of drought tolerance as affected by applied nitrogen in soybean. Journal of Agricultural Science (Camb) 115: 63-66.
35. Rahbarian, R., Khavari-Nejad, R.A., Ganjeali, A., Bagheri, A., and Najafi, F. 2011. Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations, in tolerant and susceptible chickpea (Cicer arietinum L.) genotypes. Acta abaiologica Cracoviensia 53: 2-9.
36. Simova-Stoilova, L., Demirevska, K., Petrova, T., Tsenov, N., and Feller, U. 2008. Antioxidative protection in wheat varieties under severe recoverable drought at seedling stage. Plant Soil Environment 54: 529-536.
37. Tawfik, K.M. 2008. Effect of water stress in addition to potassiomag application on mungbean. Aust. J. Basic Appl. Sci. 2: 42-52.
38. Zlatev, Z.S., and Yordanov, I.T. 2004. Effects of soil drought on photosynthesis and chlorophyll fluorescence in bean plants. Bulgarian Journal of Plant Physiology 30:3-18.
CAPTCHA Image