تأثیر تغذیه برگی میکرو و نانو ذرات عنصر روی بر برخی صفات رشدی و کیفی ماش (Vigna radiata L.) در شرایط تنش خشکی

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه فردوسی مشهد

2 دانشگاه آزاد اسلامی واحد دامغان

3 دانشگاه شاهرود

4 تهران

چکیده

به‌منظور بررسی اثرات محلول‌پاشی عنصر روی بر رشد و عملکرد ماش تحت تأثیر تنش آب، آزمایشی به‌صورت کرت‌های خُرد‌شده در قالب طرح بلوک کامل تصادفی در چهار تکرار در مرکز تحقیقات کشاورزی شاهرود در سال زراعی 91-1390 انجام شد. تیمارهای آزمایش شامل تنش کم‌آبی در دو سطح: یک نوبت قطع آبیاری در مرحله50درصد گلدهی، یک نوبت قطع آبیاری در مرحله50درصد غلافدهی و شاهد (آبیاری کامل)، به‌عنوان کرت اصلی و تیمارهای محلول‌پاشی عنصر روی در کرت‌های فرعی در چهار سطح پنج و 10‌گرم در لیتر نانو اکسید روی (Nano-ZnO) و پنج و 10‌گرم در لیتر اکسید روی (Zno) و شاهد (بدون محلول‌پاشی) بودند. نتایج نشان داد محلول‌پاشی عنصر روی به شکل‌های معمولی و نانو، ارتفاع گیاه، محتوای پرولین و عملکرد بیولوژیک و دانه را در حالت تنش خشکی و عدم تنش خشکی به‌طور معنی‌داری افزایش داد. بیشترین تأثیر عنصر روی بر گیاه به‌ترتیب مربوط به کاربرد 10‌گرم نانواکسید روی، 10‌گرم اکسیدروی، پنج گرم نانو اکسید روی و پنج گرم اکسید روی بود. محلول‌پاشی با 10‌گرم نانو ذرات اکسید روی در شرایط عدم تنش، تنش در گلدهی و غلافدهی به‌ترتیب باعث افزایش 6/6 ، 6/3 و 4/5‌درصدی عملکرد نسبت به عدم کاربرد آن گردید. بر اساس نتایج این پژوهش، محلول‌پاشی عنصر روی به‌صورت نانو ذرات نسبت به اکسید روی معمولی تأثیر بیشتری بر کاهش اثرات تنش خشکی در گیاه ماش نشان داد

کلیدواژه‌ها


عنوان مقاله [English]

The effect of foliar application of Zinc oxide in common and nanoparticles forms on some growth and quality traits of Mungbean (Vigna radiata L.) under drought stress conditions

نویسندگان [English]

  • hassan makarian 1
  • Hassan Shojaei 2
  • Ali Damavandi 2
  • Abbas Nasiri Dehsorkhi 3
  • Ahmad Akhyani 4
1 Ferdowsi university of Mashhad
2 Damghan Branch, Islamic Azad University
3 University of Shahrood
4 Tehran
چکیده [English]

Introduction
Mungbean (Vigna radiata L.) is an important, environment friendly staple food legume with rich source of proteins, vitamins, and minerals for human. Drought stress is one of the most adverse factors of Mungbean growth and productivity. Proper nutrition under stress conditions could partly help the plant to tolerate different stresses. Zinc plays a key role in the synthesis of proteins, DNA, and RNA. By consumption of zinc, it is possible to improve the growth status of the plant in stress conditions. Various studies were carried out to understand the effect of nanoparticles on the growth of plants. For example, Hong et al. (2005) and Yang et al. (2006) reported that a proper concentration of nano-TiO2 was found to improve the growth of spinach by promoting photosynthesis and nitrogen metabolism. Nano-particles have high reactivity because of more specific surface area, more density of reactive areas, or increased reactivity of these areas on the particle surfaces. Thus, the objective of this research was to investigate the effect of foliar application of Zno2 in common and nanoparticles forms on growth traits and yield of mungbean (V. radiata L.) under drought stress condition.

Materials & Methods
Experiment was carried out as a split plot in complete randomized block design with four replications in Shahrood Agricultural Research Center during the growing season of 2011-2012. Water stress at three levels (control, cutting of irrigation in 50% flowering and 50% pod setting stages) were assigned as main plots and zinc oxide foliar application in five levels (control, 5 and 10 gl-1 nano sized zinc oxide and 5 and 10 gl-1 non-nano-scale zinc oxide) were randomized in sub-plots. According to soil analysis experiment results, the soil was loam and having pH=7.8; EC=1.5 (dS/m); 0.4% of organic carbon; 0.08% N; 10, 280 and 1.1 ppm of P, K and Zn respectively. Zinc spraying on leaves was done two times at 40 and 55 day after planting. The plots were 24 m2 with 6 sowing rows, 4 m long. Seeds were placed at 3 to 5 cm depth in each row. Irrigation operations were performed until the emergence once every 7 days. Afterwards at 50% flowering and 50% of pod formation stages, irrigation was disrupted. Intended traits were measured in the end of crop season. All data collected were subjected of analysis of variance (ANOVA) using MSTATC software procedure and the significant treatment means were separated using Duncan's multiple range test.

Results & Discussion
Results showed that the drought stress at flowering and podding stages decreased the height, number of branches, chlorophyll a, b, grain and biological yield in comparison to control treatment significantly, but the effect of drought stress at podding stage was more than drought stress at flowering. Water deficit in the plant disrupts many cellular and whole plant functions, having a negative impact on plant growth and reproduction. Thus, it is one of the most yield limiting factors as it affects growth and development. Seed protein and proline content increased under drought stress significantly, while there was no significant difference for carotenoid content between treatments. Foliar application of Zinc in common and nanoparticles forms increased the height, proline content, grain and biological yield in comparison to control treatment significantly. The results showed that foliar application of 10 grams per liter nano zinc oxide in normal and drought stress at flowering and podding stages increased the grain yield by 6.6, 3.6 and 5.4 percent in comparison to no spraying treatments respectively. The maximum effects of Zinc on increasing of traits was found by foliar application of 10 grams per liter nano zinc oxide, 10 grams per liter zinc oxide, 5 grams per liter nano zinc oxide and 5 grams per liter zinc oxide respectively. With the completion of Micro-Nutrients consumption through spraying, the growth state of plant can be improved in stress conditions. Liu et al. (2005) reported that nano-Fe2O3 promoted the growth and photosynthesis of peanut. Prasad et al. (2012) reported that nano-scale zinc oxide particles increased stem and root growth and pod yield of peanut as compared with ZnSO4 application. Reduction of particle size results in increased number of particles per unit of weight and specific surface area of a fertilizer that should increase contact of fertilizer with plant leading to increase in nutrient uptake. Nanoparticles have high reactivity because of more specific surface area, more density of reactive areas, or increased reactivity of these areas on the particle surfaces. These features in nano-scale simplify their absorption in plants.

Conclusion
Mungbean growth characteristics could positively influence by foliar application of zinc oxide as nano and micro-particles in drought stress conditions. But, the effects of nano-scale zinc oxide particles on plant growth and yield was more in comparison to micro particles zinc oxide in stress and non-stressed conditions.

کلیدواژه‌ها [English]

  • grain yield
  • Proline content
  • Water deficit stress
Ahmadi, A., and Baiker, D.R. 2001. Stomatal and nonstomatal limitations of photosynthesis under water stress conditions in wheat plant. Journal of Agricultural Science 31: 813-825. (In Persian with English Summary).
2. Arnon, D.I. 1959. Photosynthesis by isolated chloroplast. IV. Central concept and comparison of three photochemical reactions. Biochemica et Biophysica Acta 20: 440-446.
3. Basole, V.D., Deotale, R.D., Ilmulwar, S.R., Raut, S.S., and Kadwe, S.B. 2003. Effect of hormone and nutrients on morpho-physiological characters and yield of soybean. Journal of Soils and Crops 13: 135-139.
4. Blum, A. 2005. Drought resistance, water-use efficiency, and yield potential-are they compatible, dissonant, or mutully exclusive? Australian Journal of Agricultural Research 56: 1159-1168.
5. Delaney, A.J., Hu, C.A.A., Kishor, K.P.B., and Verma, D.P.S. 1993. Cloning ornithine-amino transferase DNA from Vigna anconitifolia by trans-complementation in Escherichia coli and regulation of proline biosynthesis. Journal of Biological Chemistry 268: 18673-18678.
6. Davar Zareii, F., Roozbahani, A., and Hosnamidi, A. 2014. Evaluation the effect of water stress and foliar application of Fe nanoparticles on yield, yield components and oil percentage of safflower (Carthamus tinctorious L.). International Journal of Advanced Biological and Biomedical Research 2(4): 1150-1159.
7. Dumee, L.F., Lemoine, J.B., Ancel, A., Hameed, N., He, L., and Kong, L. 2015. Control of partial coalescence of self-assembled metal nano-particles across lyotropic liquid crystals templates towards long range meso-porous metal frameworks design. Nanomaterials 5: 1766-1781.
8. El-Fouly, M.M., Mobarak, Z.M., and Salama, Z.A. 2011. Micronutrients (Fe, Mn, Zn) foliar spray for increasing salinity tolerance in wheat Triticum aestivum L. African Journal of Plant Science 5: 314-322.
9. Hamzei, J., Najjari, S., Sadeghi, F., and Seyedi, M. 2014. Effect of foliar application of nano-iron chelate and inoculation with mesorhizobium bacteria on root nodulation, growth and yield of chickpea under rainfed conditions. Iranian Journal of Pulses Research 5(2): 9-18. (In Persian with English Summary).
10. Harris, D., Rashid, A., Miraj, G., Arif, M., and Shah, H. 2007. Priming seeds with zinc sulphate solution increases yield of maize (Zea mays L.) on zinc-deficient soils. Field Crops Research 102: 119-127.
11. Hong, F., Zhou, J., and Liu, C. 2005. Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biological Trace Element Research 105: 269-79.
12. Jaberzadeh, A., Moaveni, P., Tohidi Moghadam, H.R., and Moradi, A. 2010. Effect of TiO2 nanoparticles spraying on agronomic characteristics of wheat under condition drought stress. Journal of Crop Ecophysiology 2(4): 295-301. (In Persian with English Summary).
13. Jamsom, M., Galeshi, S., Pahlavani, M.H., and Zeinali, E. 2009. Evaluation of zinc foliar application on yield components, seed yield and seed quality of two soybean cultivars in summer cultivation. Journal of Plant Production 16(1): 17-28.
14. Kashiwgi, J., Krishmamurthy, L., Crouch, J., and R. Serraj. 2006. Variability of root length density and it contributions to seed yield in chickpea under terminal drought stress. Field Crop Research 95: 171-181.
15. Laalinia, A.A., Majnoon Hosseini. N., and Galostian, M. 2012. Effect of water stress on yield and yield components of mung bean at different grows (Vigna radiate L.). Agronomy Journal (Pajouhesh & Sazandegi) 95: 108-115. (In Persian with English Summary).
16. Liscano, J.F., Wilson, C.E., Norman, RJ., and Slaton, NA. 2000. Zinc availability to rice from seven granular fertilizers. AAES Research Bulletin 963: 1-31.
17. Liu, X.M., Zhang, F.D., Zhang, S.Q., He, X.S., Fang, R., Feng, Z., and Wang, Y. 2005. Effects of nano-ferric oxide on the growth and nutrients absorption of peanut. Plant Nutrition Fertilizer Science 11:14-18.
18. Maiti, R.K., Moreno-Limon, S., and Wesche- Ebeling, P. 2000. Responses of some crops to various abiotic stress factors and its physiological and biochemical basis of resistances. Agricultural Reviews 21: 155-167.
19. Mazaherinia, S., Astaraei, A.R., Fotovat, A., and Monshi, A. 2010. Nano iron oxide particles efficiency on Fe, Mn, Zn and Cu concentrations in wheat plant. World Applied Sciences 7: 36-40.
20. Mcdonald, G.K. 1992. Effect of nitrogen fertilizer on growth grain yield and grain protein concentration of wheat. Crop Science 17: 791-793.
21. Monica, R.C., and Cremonini, R. 2009. Nanoparticles and higher plants. Caryologia 62: 161-165.
22. Pak Mehr, A., Rastgoo, M., Shekari, F., Saba, J., Vazayefi, M., and Zangani, A. 2011. Effect of salicylic acid priming on yield and yield components of cowpea (Vigna unguiculata L.) under water deficit at reproductive stage. Iranian Journal of Pulses Research 2(1): 53-64. (In Persian with English Summary).
23. Pandey, A.C., Sanjay, S.S., and Yadav, R.S. 2010. Application of ZnO nanoparticlesin influencing the growth rate of Cicer arietinum. Journal of Experience Nanoscience 5: 488-497.
24. Pandey, N., Pathak, G.C., and Sharma, C.P. 2006. Zinc is critically required for pollen function and fertilization in lentil. Journal of Trace Elements in Medicine and Biology 20: 89-96.
25. Pirzad, A.R., Tousi, P., and Darvishzadeh, R. 2013. Effect of Fe and Zn foliar application on plant characteristics and essential oil content of anise (Pimpinella anisum L.). Iranian Journal of Crop Sciences 15(1): 12 -23. (In Persian with English Summary).
26. Prasad, T.N.V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Raja Reddy, K., Sreeprasad, TS., Sajanlal, PR., and Pradeep, T. 2012. Effect of manoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition 35: 905-927.
27. Rose, L.A., Feltion, W.L., and Banks, L.W. 2002. Responses of four soybean variations to foliar zinc fertilizer. Australian Journal of Experimental Agriculture and Animal Husbandry 21: 236-240.
28. Salehi, M., and Tamaskoni, F. 2008. Effect Nanocid at seed treatment on germination and seedling growth of wheat under salinity. Abstract of the First National Conference of Seed Science and Technology Iran. P: 358. (In Persian with English Summary).
29. Sehrawat, N., Jaiwal, P.K., Yadav, M., Bhat, K.V., and Sairam, R.K. 2013. Salinity stress restraining mungbean (Vigna radiata L. Wilczek) production: gateway for genetic improvement. International Journal of Agricultural Crop Science 6: 505-509.
30. Scrinis, G., and Lyons, K. 2007. The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. International Journal of Sociology, Food Agriculture 15: 22-44.
31. Shailesh, K.D., Pramod, M., Rajashri, K., and Anand, K. 2013. Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnology Development 3: 1-5.
32. Silva, D.D., Kane, M.E., and Beeson, R.C. 2012. Changes in root and shoot growth and biomass partition resulting from different irrigation intervals for Ligustrum japonicum Thunb. Horticulture Science 47: (11): 1634-1640.
33. Simkin, A.J., Moreau, H., Kuntz, M., Pagny, G., Lin, C., Tanksley, S., and McCarthy, J. 2008. An investigation of carotenoid biosynthesis in Coffea canephora and Coffea arabica. Journal of Plant Physiology 165(10): 1087-106.
34. Swiader, J.M. 2000. Micronutrient fertilizer recommendation for vegetable crop. Horticulture Facts p: 21-35.
35. Thalooth, A.T., Tawfik, M.M., and Magda Mohamad, H. 2006. A comparative study on the effect of foliar application of zinc, potassium and magnesium on growth, yield and some chemical constituents of mungbean plants grown under water stress conditions. Bulletin of Egypt, World Journal of Agricultural Sciences 2(1): 37-46.
36. Thomas, R., Robertson, M.J., Fukai, S., and Peoples, M.B. 2003. The effect of timing and severity of water deficit on growth development, yield accumulation and nitrogen fixation of Mung bean. Field Crop Research 86: 67-80.
37. Umebese, C.E., Olatimilehin, T.O., and Ogunsusi, T.A. 2009. Salicylic acid protects nitrate reductase activity, growth and proline in amaranth and tomato plants during water deficit. American Journal of Agriculture and Biology Science 4(3): 224-229.
38. Welch, R.M. 2001. Impact of mineral nutrients in plants on human nutrition on a worldwide scale. Plant Nutrition 92: 284-285.
39. Yang, F., Hong, F., and You, W. 2006. Influences of nanoanatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research 110: 179-90.
40. Zhao, C., Liu, L., Wang, J., Huang, W., Song, X., and Li, C. 2004. Predicting grain protein content of winter wheat using remote sensing data based on nitrogen status and water stress. International Journal of Applied Earth Observation and Geo- information 7(1): 1-9.
CAPTCHA Image