بهبود خصوصیات کیفی دو رقم لوبیا با مصرف تلفیقی کود‌های زیستی و شیمیایی فسفاتی و روی

نوع مقاله : مقالات پژوهشی

نویسندگان

1 تربیت مدرس تهران

2 دانشگاه نبراسکا آمریکا

چکیده

به‌منظور بررسی تأثیر کاربرد کود‌های زیستی محتوی فسفر و روی بر کاهش ویژگی‌های کیفی نامطلوب تغذیه‌ای لوبیاچیتی (Phaseolus vulgaris L.)، آزمایش مزرعه‌ای به‌صورت فاکتوریل در قالب طرح آماری بلوک‌های کامل تصادفی با سه تکرار اجرا شد. فاکتور‌های این آزمایش شامل دو رقم لوبیاچیتی (تلاش و صدری)، چهار سطح فسفر (P0: شاهد،P1: مصرف سوپر‌فسفات تریپل بر اساس آزمون خاک، P2: مصرف کود زیستی فسفاتی و سوپر‌فسفات تریپل به‌میزان 50‌درصد توصیه بر اساس آزمون خاک و P3: کود زیستی فسفاتی) و سه سطح روی (Zn0: شاهد،Zn1 : مصرف 50‌کیلوگرم در هکتار سولفات روی وZn2: کود زیستی روی) بود.کود زیستی فسفاتی شامل تلقیح با قارچ‌های میکوریزی و باکتری Azotobacter و تیمار زیستی روی تلقیح با باکتری‌های Pseudomonas بود. نتایج تجزیه واریانس تفاوت معنی‌داری در ویژگی‌های کیفی نامطلوب تغذیه‌ای بین دو رقم نشان نداد. کمترین مقدار این ویژگی‌ها (به‌جز اسید فیتیک) در رقم صدری مشاهده شد. تیمار فسفر و روی، تفاوت معنی‌دار در ویژگی‌های مورد بررسی ایجاد نمودند. کمترین میزان این ویژگی‌ها در تیمار فسفری از تیمار P2 و در تیمار روی از تیمارهای Zn1 و Zn2 به‌دست آمد. اثر متقابل تیمارهای فسفر و روی بر صفات مورد بررسی به‌جز بازدارنده‌های تریپسین معنی‌دار شد. کمترین میزان اسید فیتیک، اسید فنلیک، تانن از تیمار P2Zn1 و بازدارنده‌های تریپسین ازتیمار P2Zn2 حاصل شد.کود‌های زیستی فسفاتی مورد استفاده در این تحقیق با افزایش رشد و جذب عناصر غذایی و غنی‌سازی زیستی بذر با روی و آهن باعث بهبود کیفیت تغذیه‌ای دو رقم لوبیاچیتی شدند.

کلیدواژه‌ها


1. Abbas-Zadeh, P., ُSavaghebi, G.R., Asadi-Rahmani, H., Rejali, F., Farahbakhsh, M., Motashare-Zaade, B., and Omidvari, M. 2012. The effect of pseudomonas fluorescent on increasing of zinc compounds dissolution and improve its uptake by bean (Phaseolus vulgaris L.). Irannian Journal of Soil Research 26(20): 195-205. (In Persian).
2. Ariza-Nieto, M., Blair, M.W., Welch, R.M., and Glahn, R.P. 2007. Screening of iron bioavailability patterns in eight bean (Phaseolus vulgaris L.) genotypes using the Caco-2 cell in vitro model. Journal of Agricultural and Food Chemistry 55: 7950-7956.
3. Aura, M.D., Gina, V.C., and Mathew, W.B. 2010. Concentrations of condensed tannins and anthocyanins in common bean seed coats. Journal of Food Research 43: 595-601.
4. Balakrishnan, N., and Subramanian, K. 2012. Mycorrhizal symbiosis and bioavailability of micronutrients in maize grain. Mydica Journal 57: 129-138.
5. Baojin, X., Sam, K., and Chang, C. 2009. Total Phenolic, Phenolic Acid, Anthocyanin, Flavan-3-ol, and Flavonol Profiles and Antioxidant properties of Pinto and Black Beans (Phaseolus vulgaris L.) as affected by thermal processing. Journal of Agricultural Food Chemistry 57: 4754-4764.
6. Cakmak, I., Pfeiffer, W.H., and Mcclafferty, B. 2010. Biofortification of durum wheat with zinc and iron. Cereal Chemistry 87: 10-2.
7. Caldas, G.V., and Blair, M.W. 2009. Inheritance of condensed tannin content andrelationship with seed color and pattern genes in common bean (Phaseolusvulgaris L). Journal of Theoretical and Applied Genetics 119: 131-142.
8. Campion, B., Raymond, P.G., Aldo, T., Domenico, P., Enrico, D., Francesc, S., Roberto, C., Valeria, D., and Erik, N. 2013. Genetic reduction of antinutrients in common bean (Phaseolus vulgaris L.) seed, increases nutrients and in vitro iron bioavailability without depressing main agronomic traits. Field Crops Research 141: 27-37.
9. Cardenas, L.A., Leonel, J., Costa, M.B., and Reis, F.P. 2010. Zinc bioavailability in different bean as affected by cultivar type and cooking conditions. Journal Food Research 43: 573-581.
10. Chong, W.J., Xiu, X.H., and Shao, J.Z. 2007. The iron-deficiency induced phenolics accumulation may involve in regulation of Fe (III) chelate reductas. Plant Signaling and Behavior 2,5: 327-332.
11. Coelho, C.M.M., and Benedito, V.A. 2008. Seed development and reserve compound accumulation in common been (Phaseolus vulgaris L.). Seed Science Biotechnology 2: 42-52.
12. Erdal, I., Yilmaz, A., Taban, S., Eker, S., Torun, B., and Cacmak, I. 2002. Phytic acid and phosphorous concentrations in seeds of wheat cultivars grown with and without zinc fertilization. Journal of Plant Nutrition 25: 113-127.
13. Fageria, N.K., and Santos, A.B. 2008. Yield physiology of dry Bean. Journal of Plant Nutrition 31: 983: 1004.
14. Gupta, P., Dhawan, K., Malhotra, S.P., and Singh, R. 2000. Purification and characterization of trypsin inhibitor from seeds of faba bean (Vicia faba L.). Journal of Acta Physiologiae Plantarum 22: 433-438.
15. Hamouda, R., and Farfour, S. 2013. Enhancement the growth and phenolic content of faba bean (Vicia faba L.) by applying some biofertilizer agents. Journal of Food Studies 2(2): 20-30.
16. Haug, W., and Lantzsch, H. J. 1983. Sensitive method for the rapid determination of phytate in cereal products. Journal of Science Food Agriculture 34: 1423-1426.
17. Hanan, A., Taie, A., El-Mergawi, R., and Radwan, S. 2008. Isoflavonoids, Flavonoids, Phenolic Acids Profiles and Antioxidant Activity of soybean seeds as affected by organic and bioorganic fertilization. American-Eurasian Journal of Agricultural and Environment Science 4: 207-213.
18. Heimler, D., Vignolini, Dini, P.M.G., and Romani, A. 2005. Rapid tests to assess the antioxidant activity of Phaseolus vulgaris L. dry beans. Journal of Agricultural and Food Chemistry 53: 3053-3056.
19. Kaya, M., Küçükyumuk, Z., and Erdal, I. 2009. Phytase activity, phytic acid, zinc, phosphorus and protein contents in different chickpea genotypes in relation to nitrogen and zinc fertilization. African Journal of Biotechnology 8: 4508-4513.
20. Kakade, M.L., Rackis, J., McGhee, J.J.E., and Puski, G. 1974. Determination of trypsin inhibitor activity of soy bean products: a collaborative analysis of an improved procedure. Journal of Cereal Chemistry 51: 376-382.
21. Khattab, R.Y., and Arntfield, SD. 2009. Nutritional quality of legume seeds as affected by some physical treatments 2. Antinutritional factors. Journal of Food Science and Technology 42: 1113-1118.
22. Luthria, D.L., and Pastor-Corrales, M.A. 2006. Phenolic acids profiles of beans commonly consumed in United States. Bean Improvement Cooperative Annual Report 49: 6-7.
23. Makkar, H.P.S., Bluemmel, M., Borowy, N.K., and Becker, K. 1993. Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. Journal of the Science of Food and Agriculture 61: 161-165.
24. Malakouti, M. J. 2011. Towards improving the quality of consumed breads in Iran: A Review, Iranian Journal Food Science and Technology 8(31): 11-22. (In Persian With English Summery).
25. Marschner, H., and Dell, B. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil 159: 89-102.
26. Mohammadi, M. 1986. Report of soil science of Chaharmahal-Va-Bakhtiari (Shahrekord and Brojen regions). Soil and Water Research, Technical Publication p.: 696 & 239.
27. Mohammadi, M., Malakouti, M.J., Khavazi, K., Rejali, F., and Davoodi, M.H. 2015. The effect of bio-fertilizer and chemical fertilizers (phosphate and zinc) on yield, nutrient concentration and phytic acid/zinc molar ratio of two cultivars of bean (Phaseolus vulgaris L.). Iranian Journal of Soil biology 2(2): 99-110. (In Persian).
28. Motashare-Zadeh, B., and Savaghebi, Gh. R. 2012. The effect of balanced fertilization on nutrients, concentration and phytic acid to zinc molar ratio in Iranian red bean (Phaseolus vulgaris L.) cultivars at different stages of seed development. Iranian Journal of Science and Technology. Greenhouse Culture 3(9): 73-84. (In Persian With English Summary).
29. Rejali, 2005. A brief review on mycorrhiza symbiosis: Part 1: Principales and practices. Agricultural Research and Education Organization. Soil and Water Research Institute. Technical Bulletin No.468, 35 Pages.
30. Ryan, M.H., McInerney, J.K., Record, I.R., and Angus, J.F. 2008. Zinc bioavailability in wheat grain in relation to phosphorus fertilizer, crop sequence and mycorrhizal fungi. Journal of Science Food Agriculture 88: 1208-1216.
31. Saharan, K., Khetarpaul, N., and Bishnoi, S. 2002. Antinutrients and protein digestibility of faba bean and rice bean as affected by soaking, dehulling and germination. Journal of Food Science and Technology 39: 418-422.
32. Sangronis, E., and Machado, C.J 2007. Influence of germination on the nutritional quality of Phaseolus vulgaris and Cajanus cajan. Journal of LWT 40: 116-120
33. Sarathambalm, C., Thangaraju, M., Paulraj, C., and Gomathy, M. 2010. Assessing the Zinc solubilization ability of Gluconacetobacter diazotrophicus in maize rhizosphere using 65 labelled Zn compounds. Indian Journal of Microbiology 50(1):103-109.
34. Shahab, S., and Ahmed, N. 2008. Effect of various parameters on the efficiency of zinc phosphate solubilization by indigenous bacterial isolates. Africam Journal of Biotechnology 7(10): 1543-1549.
35. Smith, S.E., and Read, D.J. 2008. Mycorrhizal Symbiosis, Third Ed. Academic Press, London. UK.
36. Subramanian, K.S., Tenshia, V., Jayalakhshmi, K., and Ramachandran, V. 2009. Role of arbuscular mycorrhizal fungus (Glomus intraradices)-(fungus aided) in zinc nutrition of maize. Journal of Agriculture Biotechnology Sustainable Development 1: 029-038.
37. Takahashi, R., Ohmori, R., Kiyose, C., Momiyama, Y. Ohsuzu, F., and Kondo, K. 2005. Antioxidant activities of black and yellow soybeans against low density lipoprotein oxidation. Journal of Agricultural and Food Chemistry 53: 4578-4582.
38. Umeta, M., Clive, E.W., and Habtamu, F. 2005. Content of zinc, iron, calcium and their absorption inhibitors in foods commonly consumed in Ethiopia. Journal of Food Composition and Analysis 18: 803-817.
39. Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255: 571-586.
40. Welch, R.M. 2002. Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally. Journal of Nutrition.132: 495-499.
41. Xu, B.J., and Chang, S.K.C. 2008. Total phenolic content and antioxidant properties of eclipse black beans (Phaseolus vulgaris L.) as affected by processing methods. Journal of Food Science 73: 19 -27.
CAPTCHA Image